Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Gut Microbes ; 16(1): 2415488, 2024.
Article in English | MEDLINE | ID: mdl-39395000

ABSTRACT

Short-chain fatty acids (SCFAs) represent a cornerstone of gut health, serving as critical mediators of immune modulation and overall host homeostasis. Patients with dysbiosis caused by Clostridioides difficile infection (CDI) typically exhibit lower SCFAs levels compared to healthy stool donors and, thus, the concentration of SCFAs has been proposed as a proxy marker of a healthy microbiota. However, there is no consistency in the methods used to quantify SCFAs in stool samples and usually, the results are normalized by the weight of the stool samples, which does not address differences in water and fiber content and ignores bacterial counts in the sample (the main component of stool that contributes to the composition of these metabolites in the sample). Here, we show that normalized SCFAs concentrations by the bacterial count improve discrimination between healthy and dysbiotic samples (patients with CDI), particularly when using acetate and propionate levels. After normalization, butyrate is the metabolite that best discriminates eubiotic and dysbiotic samples according to the area under the receiver operating characteristic (ROC) curve (AUC-ROC = 0.860, [95% CI: 0.786-0.934], p < .0001).


Subject(s)
Bacterial Load , Clostridioides difficile , Clostridium Infections , Dysbiosis , Fatty Acids, Volatile , Feces , Gastrointestinal Microbiome , Humans , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Feces/microbiology , Feces/chemistry , Clostridium Infections/microbiology , Dysbiosis/microbiology , Clostridioides difficile/metabolism , Male , Female , Middle Aged , Adult , Aged , Butyrates/metabolism , Butyrates/analysis , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/genetics
2.
mSystems ; : e0083924, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320101

ABSTRACT

Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms that arise following lactose consumption. Recent evidence suggests that the gut microbiome may influence lactose levels in the gut. However, there is limited understanding regarding the alterations in microbiota and metabolism between individuals with LI and non-LI. This study conducted a paired-sample investigation utilizing data from the American Gut Project (AGP) and performed metagenomic and untargeted metabolomic analyses in a Chinese cohort to explore the interaction between the gut microbiome and serum metabolites. In addition, fecal microbiota transplantation (FMT) experiments were conducted to further examine the impact of the LI-associated gut microbiome on inflammatory outcomes. We identified 14 microbial genera that significantly differed between LI and controls from AGP data. Using a machine learning approach, group separation was predicted based on seven species and nine metabolites in the Chinese cohort. Notably, increased levels of Escherichia coli in the LI group were negatively correlated with several metabolites, including PC (22:6/0:0), indole, and Lyso PC, while reduced levels of Faecalibacterium prausnitzii and Eubacterium rectale were positively correlated with indole and furazolidone. FMT-LI rats displayed visceral hypersensitivity and an altered gut microbiota composition compared to FMT-HC rats. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI, which was confirmed by FMT-LI rats showing higher expression of ERK and RAS, along with increased concentrations of proinflammatory cytokines. This study provides valuable insights into the disrupted microbial and metabolic traits associated with LI, emphasizing potential microbiome-based approaches for its prevention and treatment. IMPORTANCE: Lactose intolerance (LI) is a prevalent condition characterized by gastrointestinal symptoms after lactose consumption due to a deficiency of lactase. There is limited understanding regarding the microbiota and metabolic alterations between individuals with LI and non-LI. This study represents the first exploration to investigate metagenomic and metabolomic signatures among subjects with lactose intolerance as far as our knowledge. We identified 14 microbial genera in the Western cohort and 7 microbial species, along with 9 circulating metabolites in the Chinese cohort, which significantly differed in LI patients. Metagenomic and metabolomic analyses revealed an enrichment of MAPK signaling in LI patients. This finding was confirmed by FMT-LI rats, exhibiting increased expression of ERK and RAS, along with higher concentrations of pro-inflammatory cytokines. Our study provides insights into the disrupted functional and metabolic traits of the gut microbiome in LI, highlighting potential microbiome-based approaches for preventing and treating LI.

3.
Int Immunopharmacol ; 142(Pt B): 113183, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39298815

ABSTRACT

Children all over the world suffer from atopic dermatitis (AD), a prevalent condition that impairs their health. Corticosteroids, which have long-term negative effects, are frequently used to treat AD. There has been a growing body of research on the gut microbiota's function in AD. Nevertheless, the function and underlying mechanisms of fecal microbiota transplantation (FMT) in AD children remain to be established. Therefore, in order to assess the preventive effects of FMT treatment on AD and investigate the mechanisms, we constructed an ovalbumin (OVA)-induced juvenile mouse AD model in this investigation. This study explored the role and mechanism of FMT treatment in AD through 16S RNA sequencing, pathological histological staining, molecular biology, and Flow cytometry. Results demonstrated that the FMT treatment improved the gut microbiota's diversity and composition, bringing it back to a level similar to that of a close donor. Following FMT treatment, OVA-specific antibodies were inhibited, immunoglobulin (Ig) E production was decreased, the quantity of mast cells and eosinophils was decreased, and specific inflammatory markers in the skin and serum were decreased. Further mechanistic studies revealed that FMT treatment induced CD103+ DCs and programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) expression in skin-draining lymph nodes and promoted Treg production to induce immune tolerance and suppress skin inflammation. Meanwhile, changes in the gut microbiota were substantially correlated with Th2 cytokines, OVA-specific antibodies, and PD-L1/PD-1. In conclusion, FMT regulates the Th1/Th2 immunological balance and the gut microbiota. It may also inhibit AD-induced allergy responses through the PD-L1/PD-1 pathway, and providing a unique idea and possibly a fresh approach to the treatment of AD.


Subject(s)
Dermatitis, Atopic , Disease Models, Animal , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Ovalbumin , Animals , Dermatitis, Atopic/therapy , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Ovalbumin/immunology , Gastrointestinal Microbiome/immunology , Mice , Mice, Inbred BALB C , Immunoglobulin E/blood , Immunoglobulin E/immunology , T-Lymphocytes, Regulatory/immunology , Female , Skin/pathology , Skin/immunology , Skin/microbiology , Programmed Cell Death 1 Receptor/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Humans , Allergens/immunology , Immune Tolerance , Cytokines/metabolism
4.
Heliyon ; 10(18): e37432, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309854

ABSTRACT

The regulation of immune functions and the maintenance of homeostasis in the internal environment are both integral to human gut microbiota (GM). If GM is disturbed, it can result in a range of autoimmune diseases, including chronic inflammatory skin conditions. Chronic inflammatory skin diseases driven by T or B-cell-mediated immune reactions are complex, including the most prevalent diseases and some rare diseases. Expanding knowledge of GM dysbiosis in chronic inflammatory skin diseases has emerged. The GM has some causal roles in the pathogenesis of these skin conditions. Targeting microbiota treatment, particularly fecal microbiota transplantation (FMT), is considered to be a promising strategy. FMT was commonly used in intestinal diseases by reshaping and balancing GM, serving as a reasonable administration in these skin inflammatory diseases. This paper summarizes the existing knowledge of GM dysbiosis in chronic inflammatory skin diseases and the research data on FMT treatment for such conditions.

5.
Rev Cardiovasc Med ; 25(7): 240, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39139438

ABSTRACT

Heart failure (HF) is a clinical syndrome characterizing by typical physical signs and symptomatology resulting from reduced cardiac output and/or intracardiac pressure at rest or under stress due to structural and/or functional abnormalities of the heart. HF is often the final stage of all cardiovascular diseases and a significant risk factor for sudden cardiac arrest, death, and liver or kidney failure. Current pharmacological treatments can only slow the progression and recurrence of HF. With advancing research into the gut microbiome and its metabolites, one such trimethylamine N-oxide (TMAO)-has been implicated in the advancement of HF and is correlated with poor prognosis in patients with HF. However, the precise role of TMAO in HF has not yet been clarified. This review highlights and concludes the available evidence and potential mechanisms associated with HF, with the hope of contributing new insights into the diagnosis and prevention of HF.

6.
Curr Res Food Sci ; 9: 100815, 2024.
Article in English | MEDLINE | ID: mdl-39161885

ABSTRACT

Cranberry is abundantly rich in anthocyanins, a type of flavonoid with potent antioxidant properties and the resistance against certain diseases. In this study, anthocyanin-rich cranberry extract was extracted, purified, and its components were analyzed. 92.18 % of anthocyanins was obtained and the total content of anthocyanins was 302.62 mg/g after AB-8 resin purification. Quantification analysis showed that the extract mainly contained cyanidin-3-galactoside, procyanidin B2 and procyanidin B4. Then we explored its effects on dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice. The supplementation of cranberry extract resulted in an alleviation of IBD symptoms, evidenced by improvements in the disease activity index (DAI), restoration of colon length and colonic morphology. Cranberry extract reversed the elevated iron and malondialdehyde (MDA) levels and restored glutathione (GSH) levels in IBD mice. Further analysis revealed that cranberry modulated ferroptosis-associated genes and reduced expression of pro-inflammatory cytokines. Although cranberry influenced the intestinal flora balance by reducing Proteobacteria and Escherichia-Shigella, and increasing Lactobacillus, as well as enhancing SCFAs content, these effects were not entirely dependent on intestinal flora modulation, as indicated by antibiotic intervention and fecal microbiota transplantation (FMT) experiments. In conclusion, our findings suggest that the beneficial impact of cranberry extract on IBD may primarily involve the regulation of colonic ferroptosis, independent of significant alterations in intestinal flora.

7.
Cureus ; 16(6): e62265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39006586

ABSTRACT

Fecal microbiota transplantation (FMT) is the administration of fecal bacteria from a healthy donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition and confer a health benefit. The relationship between the gut microbiome and the central nervous system, termed the gut-brain axis, has been a frequent topic of gut microbiome studies. Commensal gut bacteria communicate with the central nervous system through various hormones, cytokines, and neural pathways. Therefore, influencing the gut microbiome via FMT may have the potential in treating symptoms of neurodegenerative conditions. This study aims to identify current uses of FMT in treating neurodegenerative diseases and highlight areas of future investigation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework, a literature search was conducted of peer-reviewed sources on September 27, 2022, from Embase, MEDLINE, Web of Science, and Cochrane Central. Search terms were utilized that were related to the application of FMT and neurodegenerative disorders and limited those human studies, those that were published in English, and those that were published between 2017 and 2022. The initial search yielded 450 unique articles, and after the assessment of the title and abstract for inclusion and exclusion criteria, six articles were identified for full-text review. Studies that focused on either Parkinson's disease (PD) or multiple sclerosis (MS) demonstrated improvements in both motor symptoms and non-motor symptoms. FMT was also shown to provide significant relief of constipation and general gastrointestinal (GI) symptoms in all conditions studied. The studies related to MS showed the most mixed results with regard to symptomatic improvement. The data on the use of FMT as a treatment for neurodegenerative disorders is limited; however, studies have shown not only improvement in GI symptoms but also improvement in the cognitive symptoms of PD and dementia. The data on FMT as a treatment to improve the motor symptoms of PD is both more complete and more compelling than the data on the motor symptoms of MS. The studies that were reviewed showed no major adverse effects of FMT and generally promising results. There is a strong case to be made for larger, more well-controlled studies to be done on FMT and its potential use as a treatment not only for GI symptoms but for the motor and cognitive symptoms of neurodegenerative diseases.

8.
Microorganisms ; 12(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39065063

ABSTRACT

Fecal Microbiota Transplantation (FMT) represents a promising therapeutic tool under study for several purposes and is currently applied to the treatment of recurrent Clostridioides difficile infection. However, since the use of fresh stool was affected by several issues linked to donor screening, the development of a frozen stool bank is a reliable option to standardize FMT procedures. Nevertheless, different environmental factors impact microbial viability. Herein, we report the effect of different thawing temperatures and storage conditions on bacterial suspensions in the FMT procedure. In total, 20 stool samples were divided into aliquots and tested across a combination of different storing periods (15, 30; 90 days) and thawing procedures (4 °C overnight, room temperature for 1 h; 37 °C for 5 min). Focusing on storage time, our data showed a significant reduction in viability for aerobic and anaerobic bacteria after thawing for 15 days, while no further reductions were observed until after 90 days. Instead, among the different thawing procedures, no significant differences were observed for aerobic bacteria, while for anaerobes, thawing at 37 °C for 5 min was more effective in preserving the bacterial viability. In conclusion, the frozen fecal microbiota remained viable for at least three months, with an excellent recovery rate in all three thawing conditions.

9.
J Agric Food Chem ; 72(29): 16484-16495, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990698

ABSTRACT

As a food contaminant that can be quickly absorbed through the gastrointestinal system, furan has been shown to disrupt the intestinal flora and barrier. Investigation of the intestinal toxicity mechanism of furan is of great significance to health. We previously identified the regulatory impact of salidroside (SAL) against furan-provoked intestinal damage, and the present work further explored whether the alleviating effect of SAL against furan-caused intestinal injury was based on the intestinal flora; three models, normal, pseudo-germ-free, and fecal microbiota transplantation (FMT), were established, and the changes in intestinal morphology, barrier, and inflammation were observed. Moreover, 16S rDNA sequencing observed the variation of the fecal flora associated with inflammation and short-chain fatty acids (SCFAs). Results obtained from the LC-MS/MS suggested that SAL increased furan-inhibited SCFA levels, activated the mRNA expressions of SCFA receptors (GPR41, GPR43, and GPR109A), and inhibited the furan-activated TLR4/MyD88/NF-κB signaling. Analysis of protein-protein interaction further confirmed the aforementioned effects of SAL, which inhibited furan-induced barrier damage and intestinal inflammation.


Subject(s)
Bacteria , Fatty Acids, Volatile , Furans , Gastrointestinal Microbiome , Glucosides , Phenols , Signal Transduction , Toll-Like Receptor 4 , Gastrointestinal Microbiome/drug effects , Glucosides/pharmacology , Phenols/pharmacology , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Animals , Signal Transduction/drug effects , Furans/pharmacology , Male , Fatty Acids, Volatile/metabolism , Humans , Mice , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , NF-kappa B/metabolism , NF-kappa B/genetics , Rhodiola/chemistry , Inflammation/metabolism , Inflammation/drug therapy , Mice, Inbred C57BL
10.
Microbiome ; 12(1): 122, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970126

ABSTRACT

BACKGROUND: Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition. RESULTS: Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time. CONCLUSIONS: FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome. TRIAL REGISTRATION: The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.


Subject(s)
Bacteriophages , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Obesity , Humans , Fecal Microbiota Transplantation/methods , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Bacteriophages/genetics , Feces/microbiology , Feces/virology , Obesity/therapy , Obesity/microbiology , Double-Blind Method , Female , Adolescent , Male , Bacteria/classification , Bacteria/virology , Bacteria/genetics , Metagenomics/methods , Treatment Outcome
11.
Pharmacol Res ; 207: 107323, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053865

ABSTRACT

The natural aging process is accompanied by changes in exosomes, gut microbiota, and metabolites. This study aimed to reveal the anti-aging effect and mechanisms of fecal microbiota transplantation (FMT) from young donors on the natural aging process in mice by analyzing exosomes, gut microbiota, and metabolomics. Aging-relevant telomeric length, oxidative stress indexes in brain tissue, and serum cytokine levels were measured. Flow analysis of T-regulatory (Treg), CD4+, and CD8+ cells was performed, and the expression levels of aging-related proteins were quantified. High-throughput sequencing technology was used to identify differentially expressed serum exosomal miRNAs. Fecal microbiota was tested by 16 S rDNA sequencing. Changes in fecal metabolites were analyzed by UPLC-Q-TOF/MS. The results indicated that the expression of mmu-miR-7010-5p, mmu-miR-376b-5p, mmu-miR-135a-5p, and mmu-miR-3100-5p by serum exosomes was down-regulated and the abundance of opportunistic bacteria (Turicibacter, Allobaculum, Morganella.) was decreased, whereas the levels of protective bacteria (Akkermansia, Muribaculaceae, Helicobacter.) were increased after FMT. Metabolic analysis identified 25 potential biomarkers. Correlation analysis between the gut microbiota and metabolites suggested that the relative abundance of protective bacteria was positively correlated with the levels of spermidine and S-adenosylmethionine. The study indicated that FMT corrected brain injury due to aging via lipid metabolism, the metabolism of cofactors and vitamins, and amino acid metabolism.


Subject(s)
Aging , Brain , Exosomes , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Metabolomics , Mice, Inbred C57BL , MicroRNAs , Animals , Brain/metabolism , MicroRNAs/metabolism , Exosomes/metabolism , Male , Mice , Oxidative Stress , Cytokines/metabolism , Cytokines/blood
12.
Article in English | MEDLINE | ID: mdl-38871148

ABSTRACT

BACKGROUND & AIMS: Clostridioides difficile infection (CDI) is associated with high mortality. Fecal microbiota transplantation (FMT) is an established treatment for recurrent CDI, but its use for first or second CDI remains experimental. We aimed to investigate the effectiveness of FMT for first or second CDI in a real-world clinical setting. METHODS: This multi-site Danish cohort study included patients with first or second CDI treated with FMT from June 2019 to February 2023. The primary outcome was cure of C. difficile-associated diarrhea (CDAD) 8 weeks after the last FMT treatment. Secondary outcomes included CDAD cure 1 and 8 weeks after the first FMT treatment and 90-day mortality following positive C. difficile test. RESULTS: We included 467 patients, with 187 (40%) having their first CDI. The median patient age was 73 years (interquartile range [IQR], 58-82 years). Notably, 167 (36%) had antibiotic-refractory CDI, 262 (56%) had severe CDI, and 89 (19%) suffered from fulminant CDI. Following the first FMT treatment, cure of CDAD was achieved in 353 patients (76%; 95% confidence interval [CI], 71%-79%) at week 1. At week 8, 255 patients (55%; 95% CI, 50%-59%) maintained sustained effect. In patients without initial effect, repeated FMT treatments led to an overall cure of CDAD in 367 patients (79%; 95% CI, 75%-82%). The 90-day mortality was 10% (95% CI, 8%-14%). CONCLUSION: Repeated FMT treatments demonstrate high effectiveness in managing patients with first or second CDI. Forwarding FMT in CDI treatment guidelines could improve patient survival. CLINICALTRIALS: gov, Number: NCT03712722.

13.
mSystems ; 9(6): e0025724, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38780265

ABSTRACT

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental condition characterized by social communication deficiencies and stereotypic behaviors influenced by hereditary and/or environmental risk factors. There are currently no approved medications for treating the core symptoms of ASD. Human fecal microbiota transplantation (FMT) has emerged as a potential intervention to improve autistic symptoms, but the underlying mechanisms are not fully understood. In this study, we evaluated the effects of human-derived FMT on behavioral and multi-omics profiles of the BTBR mice, an established model for ASD. FMT effectively alleviated the social deficits in the BTBR mice and normalized their distinct plasma metabolic profile, notably reducing the elevated long-chain acylcarnitines. Integrative analysis linked these phenotypic changes to specific Bacteroides species and vitamin B6 metabolism. Indeed, vitamin B6 supplementation improved the social behaviors in BTBR mice. Collectively, these findings shed new light on the interplay between FMT and vitamin B6 metabolism and revealed a potential mechanism underlying the therapeutic role of FMT in ASD.IMPORTANCEAccumulating evidence supports the beneficial effects of human fecal microbiota transplantation (FMT) on symptoms associated with autism spectrum disorder (ASD). However, the precise mechanism by which FMT induces a shift in the microbiota and leads to symptom improvement remains incompletely understood. This study integrated data from colon-content metagenomics, colon-content metabolomics, and plasma metabolomics to investigate the effects of FMT treatment on the BTBR mouse model for ASD. The analysis linked the amelioration of social deficits following FMT treatment to the restoration of mitochondrial function and the modulation of vitamin B6 metabolism. Bacterial species and compounds with beneficial roles in vitamin B6 metabolism and mitochondrial function may further contribute to improving FMT products and designing novel therapies for ASD treatment.


Subject(s)
Disease Models, Animal , Fecal Microbiota Transplantation , Vitamin B 6 , Animals , Mice , Humans , Vitamin B 6/metabolism , Gastrointestinal Microbiome , Male , Social Behavior , Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/microbiology , Autistic Disorder/therapy , Autistic Disorder/metabolism , Autistic Disorder/microbiology
14.
Transl Cancer Res ; 13(4): 2043-2063, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38737692

ABSTRACT

Background and Objective: With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods: Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings: The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions: The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.

15.
Theranostics ; 14(6): 2304-2328, 2024.
Article in English | MEDLINE | ID: mdl-38646653

ABSTRACT

The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.


Subject(s)
Carcinogenesis , Dysbiosis , Gastrointestinal Microbiome , Neoplasms , Humans , Neoplasms/microbiology , Neoplasms/therapy , Dysbiosis/microbiology , Animals
16.
Dig Dis Sci ; 69(5): 1778-1784, 2024 May.
Article in English | MEDLINE | ID: mdl-38457115

ABSTRACT

BACKGROUND: Fecal microbiota transplants can be administered orally in encapsulated form or require invasive procedures to administer liquid formulations. There is a need for an oral liquid formulation of fecal microbiota for patients who are unable to swallow capsules, especially if they require multiple, repeated administrations. AIMS: These studies were conducted to develop a protocol to manufacture an organoleptically acceptable powdered fecal microbiota formulation that can be suspended in a liquid carrier and used for fecal microbiota transplantation. METHODS: Several processing steps were investigated, including extra washes of microbiota prior to lyophilization and an addition of a flavoring agent. The viability of bacteria in the transplant formulation was tested using live/dead microscopy staining and engraftment into antibiotic-treated mice. After development of a clinical protocol for suspension of the powdered microbiota, the new formulation was tested in three elderly patients with recurrent Clostridioides difficile infections and who have difficulties in swallowing capsules. Changes in the microbial community structure in one of the patients were characterized using 16S rRNA gene profiling and engraftment analysis. RESULTS: The processing steps used to produce an organoleptically acceptable suspension of powdered fecal microbiota did not result in loss of its viability. The powder could be easily suspended in a liquid carrier. The use of the new formulation was associated with abrogation of the cycle of C. difficile infection recurrences in the three patients. CONCLUSION: We developed a novel organoleptically acceptable liquid formulation of fecal microbiota that is suitable for use in clinical trials for patients with difficulties in swallowing capsules.


Subject(s)
Fecal Microbiota Transplantation , Fecal Microbiota Transplantation/methods , Humans , Animals , Administration, Oral , Clostridium Infections/therapy , Clostridium Infections/microbiology , Mice , Aged , Feces/microbiology , Clostridioides difficile/isolation & purification , Recurrence , Male , Female , Gastrointestinal Microbiome/drug effects , Powders , Treatment Outcome , Aged, 80 and over
17.
Microbiol Res ; 282: 127654, 2024 May.
Article in English | MEDLINE | ID: mdl-38417203

ABSTRACT

Abdominal obesity (AO), characterized by the excessive abdominal fat accumulation, has emerged as a significant public health concern due to its metabolic complications and escalating prevalence worldwide, posing a more pronounced threat to human health than general obesity. While certain studies have indicated that intestinal flora contributed to diet-induced general obesity, the precise involvement of gut microbiota in the development of AO, specifically the accumulation of abdominal fat, remains inadequately explored. In this study, the 16 S rDNA sequencing was employed to analyze gut flora alterations, and the intestinal microbiota dysbiosis characterized by a vanishing decline of Akkermansia was found in the AO group. Along with notable gut microbiota changes, the intestinal mucosal barrier damage and metabolic inflammation were detected, which collectively promoted metabolic dysregulation in AO. Furthermore, the metabolic inflammation and AO were ameliorated after the intestinal microbiota depletion with antibiotics (ABX) drinking, underscoring a significant involvement of gut microbiota dysbiosis in the progression of AO. More importantly, our findings demonstrated that the transplantation of healthy intestinal flora successfully reversed the gut microbiota dysbiosis, particularly the decline of Akkermansia in the AO group. The gut flora reshaping has led to the repair of gut barrier damage and mitigation of metabolic inflammation, which ultimately ameliorated abdominal fat deposition. Our study established the role of interactions between gut flora, mucus barrier, and metabolic inflammation in the development of AO, thereby offering a theoretical foundation for the clinical application of fecal microbiota transplantation (FMT) as a treatment for AO.


Subject(s)
Fecal Microbiota Transplantation , Microbiota , Mice , Humans , Animals , Obesity, Abdominal , Dysbiosis/therapy , Obesity/drug therapy , Obesity/metabolism , Inflammation , Mice, Inbred C57BL
18.
Endocrine ; 84(1): 48-62, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38001323

ABSTRACT

OBJECTIVE: Type 2 diabetes mellitus (T2DM) is one of the common metabolic diseases worldwide, and studies have found significant differences in the composition and ratio of intestinal flora between patients with T2DM and normal glucose tolerance, and fecal microbiota transplantation (FMT) may modulate the composition of the intestinal microbiota thereby alleviating the hyperglycemic state. We conducted a meta-analysis and systematic review of existing randomized controlled trials (RCTs) to assess the efficacy of FMT in T2DM. METHODS: We conducted a computer search of PubMed, Embase, The Cochrane Library, and Web of Science to screen randomized controlled trials studies on FMT treatment for T2DM and extracted data from studies that met inclusion criteria. RevMan 5.4 software and Stata 11 software was used for meta-analysis. The indexes of Hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), postprandial blood glucose (PBG), homeostasis model assessment of insulin resistance (HOMA-IR), triglycerides (TG), cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), body mass index (BMI), Aspartate Aminotransferase (AST), Alanine Transaminase (ALT), Systolic blood pressure (SBP) and Diastolic blood pressure (DBP) were mainly evaluated after FMT treatment of T2DM patients, and the changes of intestinal flora were evaluated. RESULTS: Four RCTs met the inclusion criteria and were included in the meta-analysis. Results of the meta-analysis showed that compared with the non-FMT group, FMT combined treatment could significantly reduce the PBG level in patients with type 2 diabetes (MD = -0.51, 95% CI: -1.42-0.40, P = 0.27). Compared with single FMT treatment, FMT combined treatment could reduce TG levels in patients with type 2 diabetes (MD = -0.60, 95% CI: -1.12~-0.07, P = 0.03). The levels of TG (MD = -0.26, 95% CI: -0.51~-0.02, P = 0.03), HOMA-IR (MD = -2.73, 95% CI: -4.71~0.75, P = 0.007) and HDL (MD = -0.06,95% CI: -0.10~-0.02, P = 0.003) were significantly decreased after treatment in the single FMT group. The level of TC (MD = -0.65, 95% CI: -1.00~-0.31, P = 0.0002) was significantly decreased after FMT combined treatment. Compared with before treatment, ALT (MD = -2.52, 95% CI: -3.86~-1.17, P = 0.0002) and DBP (MD = -2, 95% CI: -3.32~0.68, P = 0.003) levels decreased after treatment in the single FMT group and the FMT combined group. FPG (MD = -0.94, 95% CI: -1.86~-0.02, P = 0.04), TG (MD = -0.73, 95% CI: -1.42~-0.04, P = 0.04) and TC (MD = -0.94, 95% CI: -1.45~-0.43, P = 0.0003) were significantly decreased after combined drug and diet therapy. Secondly, FMT can promote the colonization and growth of donor-related flora in patients with type 2 diabetes. CONCLUSION: In patients with type 2 diabetes mellitus, FMT treatment can reduce the levels of PBG, TG, HOMA-IR, TC, ALT, and DBP, especially in the combined treatment regimen. In addition, FMT can reshape the intestinal flora and establish the balance of dominant flora.


Subject(s)
Diabetes Mellitus, Type 2 , Fecal Microbiota Transplantation , Humans , Diabetes Mellitus, Type 2/drug therapy , Triglycerides , Cholesterol , Body Mass Index , Lipoproteins, HDL , Blood Glucose/metabolism
19.
J Radiat Res ; 65(1): 55-62, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37996087

ABSTRACT

Radiation-induced gastrointestinal damage is a common acute radiation syndrome. Previous studies have highlighted that Galectin-1 and Interleukin-6 (IL-6) are associated with flaking of small intestinal villi and intestinal radioresistance. Therefore, our goal is to study whether gut bacteria regulated by galectin-1 or IL-6 can mitigate radiation-induced small intestine damage. In this study, differences between galectin-1, sgp130-regulated and wild-type (WT) mice were analyzed by microbiome array. The effects of the Firmicutes/Bacteroidetes (F/B) ratio and the proportion of bacterial distribution at the phylum level were observed after 18 Gy whole abdomen radiation. Fecal microbiota transplantation was used to implant radioresistant gut flora into WT mice, and the number of viable small intestinal crypt foci was observed by immunohistochemistry. Fecal transplantation from galectin-1 knockout and sgp130 transgenic mice, with higher radiation resistance, into WT mice significantly increased the number of surviving small intestinal crypts. This radiation resistance, generated through gene regulation, was not affected by the F/B ratio. We initially found that the small intestinal villi of WT mice receiving radioresistant mouse fecal bacteria demonstrated better repair outcomes after radiation exposure. These results indicate the need for a focus on the identification and application of superior radioresistant bacterial strains. In our laboratory, we will further investigate specific radioresistant bacterial strains to alleviate acute side effects of radiation therapy to improve the patients' immune ability and postoperative quality of life.


Subject(s)
Galectin 1 , Gastrointestinal Microbiome , Humans , Mice , Animals , Galectin 1/pharmacology , Interleukin-6/pharmacology , Cytokine Receptor gp130 , Quality of Life , Intestine, Small
20.
Poult Sci ; 103(2): 103316, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128454

ABSTRACT

The interesting roles and efficiencies of fecal microbiota transplantation (FMT) have attracted considerable attention and have been gradually evidenced in specific animal models. While the growing evidence that bacteriophages play roles in FMT efficacy has attracted considerable interest. In this study, we aimed to explore the effects of FMT and fecal virome transplantation (FVT) in improving inflammatory damage and ileal microbiota disorder in broilers. A total of 224 Arbor Acres broilers were selected at 1-day-old and randomly divided into the following 4 groups, with 56 broilers in each group: the CON group (the negative control group, sterile physiological saline injection + sterile phosphate-buffered saline (PBS) solution gavage), LPS group (the positive control group, lipopolysaccharide (LPS) injection + sterile PBS solution gavage), LPS + FMT group (LPS injection + FMT solution gavage), LPS + FVT group (LPS injection + FVT solution gavage). The results showed that: LPS injection significantly upregulated the mRNA expression levels of IFN-γ (P < 0.05) and IL-8 (P < 0.001) in ileal mucosa of broilers at 11th day of age (D11), while LPS + FMT and LPS + FVT did not; LPS injection significantly upregulated the mRNA expression of ZO-1 in ileal mucosa at D11 (P < 0.01), while LPS + FMT and LPS + FVT did not; at D11, compare to CON group, LPS injection and LPS + FMT significantly increased the relative abundance of virulence factor Rab2 interacting conserved protein A-related genes in broiler ileum contents (P < 0.05), while LPS + FVT had no significant difference with CON group (P > 0.05); at D11, LPS injection significantly downregulated the biosynthesis of antibiotics pathway (P < 0.05) in the ileal contents, while LPS + FVT did not. In conclusion, both FMT and FVT could promote the recovery of inflammation caused by LPS. Furthermore, FVT had shown less disadvantage stimulation on the broilers and could reduce the risk of transmission of pathogenic genes, compared to FMT.


Subject(s)
Fecal Microbiota Transplantation , Intestinal Diseases , Animals , Fecal Microbiota Transplantation/veterinary , Fecal Microbiota Transplantation/methods , Lipopolysaccharides/toxicity , Chickens , Virome , Intestinal Diseases/veterinary , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL