Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Chempluschem ; : e202400386, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39031624

ABSTRACT

Ferroelastic materials with high phase transition temperature have broad application prospects in information conversion and storage, shape memory, energy conversion, hyperelasticity, etc. However, most of the current reports focus on inorganic ferroelastic materials. Inorganic ferroelastic materials have the disadvantages of high energy consumption and harmful metals, which limit their application in practical work. In contrast, organic ferroelastic materials have the advantages of structural adjustability, environmental protection, easy processing, low cost, mechanical flexibility, and so on, which have great development potential in new ferroelastic materials. Here, we have successfully designed and synthesized a pair of homochiral enantiomers [(R/S)-4-fluorobenzoic acid-2-amino-2-phenylethanol] (R- and S-F) using the chemical design strategy of H/F substitution. Compared with the non-F substitution [(R/S)-benzoic acid-2-amino-2-phenylethanol] (R- and S-H), they undergo 2F1-type ferroelastic phase transitions at 370 K. Notably, the ferroelastic domains of R/S-F can be controlled through two physical channels that are temperature and stress, showing great potential in dual-channel switches.

2.
Acta Crystallogr A Found Adv ; 80(Pt 4): 329-338, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38934405

ABSTRACT

This paper proposes a new order parameter model which satisfactorily explains complicated symmetry changes, the temperature-pressure (T-P) phase diagram and elastic anomalies observed experimentally with the improper ferroelastic phase transitions in multiferroic KMnF3 single crystal. First, it is shown that the order parameter model is transformed according to the four-dimensional reducible representation of the wavevector star channel group. Second, based on the order parameter model and the singularity theory, the sixth-order structurally stable Landau potential model is constructed. Finally, the theoretical T-P phase diagram is plotted and the elastic anomalies possible for each of the phase transitions are discussed.

3.
ACS Appl Mater Interfaces ; 16(26): 33752-33762, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902888

ABSTRACT

The sensitivity of ferroelectric domain walls to external stimuli makes them functional entities in nanoelectronic devices. Specifically, optically driven domain reconfiguration with in-plane polarization is advantageous and thus is highly sought. Here, we show the existence of in-plane polarized subdomains imitating a single domain state and reversible optical control of its domain wall movement in a single-crystal of ferroelectric BaTiO3. Similar optical control in the domain configuration of nonpolar ferroelastic material indicates that long-range ferroelectric polarization is not essential for the optical control of domain wall movement. Instead, flexoelectricity is found to be an essential ingredient for the optical control of the domain configuration, and hence, ferroelastic materials would be another possible candidate for nanoelectronic device applications.

4.
Angew Chem Int Ed Engl ; 63(33): e202408247, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38837719

ABSTRACT

The construction of mechanically responsive materials with reversible shape-shifting, shape-locking, and stretchability holds promise for a wide range of applications in fields such as soft robotics and flexible electronics. Here, we report novel thermoelastic one-dimensional organic-inorganic hybrids (R/S-Hmpy)PbI3 (Hmpy=2-hydroxymethyl-pyrrolidinium) to show mechanical responses. The single crystals undergo two phase transitions at 310 K and 380 K. When heated to 380 K, they show shape-shifting and expansion along the b-axis by about 13.4 %, corresponding to a larger deformation than that of thermally activated shape memory alloys (8.5 %), and exhibit a strong actuation force. During the cooling process, the stretched crystal shape maintains and a shape-locking phenomenon occurs, which is lifted when the temperature decreases to 305 K. Meanwhile, due to the introduction of chiral ions, the thermal switching shows a 10-fold second-order nonlinear switching contrast (common values typically below 3-fold). This study presents a thermoelastic actuator based on shape-shifting and -locking of organic-inorganic hybrids for the first time. The dielectric and nonlinear optical switching properties of organic-inorganic hybrids broaden the range of applications of mechanically responsive crystals.

5.
ACS Appl Mater Interfaces ; 16(25): 32425-32433, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38865279

ABSTRACT

The application potential of ferroelectric thin films largely relies on the controllability of their domain structure. Among the various proposed strategies, mechanical switching is being considered as a potential alternative to replace electrical switching for control of the domain structure of ferroelectric thin films via, e.g., the flexoelectric effect. So far, studies on mechanical switching are confined to out-of-plane polarization switching in ferroelectric thin films, which are in pristine or prepoled single-domain states. In this work, we report reversible in-plane mechanical switching of the monoclinic phase (MC phase) stripe domains in BiFeO3 thin films can be realized by scanning tip force. Via controlling the fast scan direction of the scanning probe microscopy tip and the magnitude of the tip force, the effective trailing field induced by the local tip force can be rotated to consequently switch the net in-plane polarization of the two-variant stripe domain patterns by either 90° or 180°. Moreover, the monoclinic to rhombohedral (MC-R) phase transition occurs during mechanical switching with the distribution of R-phase domains dependent on the switching paths. These results extend our current understanding of the mechanical switching behavior in ferroelectric thin films and should be instructive for their future applications.

6.
Nano Lett ; 24(22): 6737-6742, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775230

ABSTRACT

Understanding the nucleation mechanism of domains is essential for domain engineering of perovskite ferroelectric materials. We proposed and examined atomistic details for nucleating ferroelastic (FS) domains by integrating topological analysis and first-principles calculations. FS domains are crystallographically treated as deformation twins. The conventional shear-shuffle nucleation mechanism under simple shear deformation is ruled out because the 1-layer elementary twinning disconnection (TD) cannot nucleate and glide in a perfect matrix. Thus, the pure-shuffle nucleation mechanism under pure shear deformation is proposed due to kinetically favored atomic shuffling. The coherency stress associated with the coherent nucleus is relaxed via forming misfit dislocations, accompanied by formation and sharpening of diffused (110)m∥(110)d domain walls (DWs). The sharp DWs enable growth of the FS nucleus through successive nucleation and gliding of TDs. These findings enrich the knowledge of domain behavior in perovskite ferroelectric materials.

7.
Acta Crystallogr A Found Adv ; 80(Pt 3): 293-304, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38683644

ABSTRACT

Monoclinic ferroelectric phases are prevalent in various functional materials, most notably mixed-ion perovskite oxides. These phases can manifest as regularly ordered long-range crystallographic structures or as macroscopic averages of the self-assembled tetragonal/rhombohedral nanodomains. The structural and physical properties of monoclinic ferroelectric phases play a pivotal role when exploring the interplay between ferroelectricity, ferroelasticity, giant piezoelectricity and multiferroicity in crystals, ceramics and epitaxial thin films. However, the complex nature of this subject presents challenges, particularly in deciphering the microstructures of monoclinic domains. In Paper I [Biran & Gorfman (2024). Acta Cryst. A80, 112-128] the geometrical principles governing the connection of domain microstructures formed by pairing MAB type monoclinic domains were elucidated. Specifically, a catalog was established of `permissible domain walls', where `permissible', as originally introduced by Fousek & Janovec [J. Appl. Phys. (1969), 40, 135-142], denotes a mismatch-free connection between two monoclinic domains along the corresponding domain wall. The present article continues the prior work by elaborating on the formalisms of permissible domain walls to describe domain microstructures formed by pairing the MC type monoclinic domains. Similarly to Paper I, 84 permissible domain walls are presented for MC type domains. Each permissible domain wall is characterized by Miller indices, the transformation matrix between the crystallographic basis vectors of the domains and, crucially, the expected separation of Bragg peaks diffracted from the matched pair of domains. All these parameters are provided in an analytical form for easy and intuitive interpretation of the results. Additionally, 2D illustrations are provided for selected instances of permissible domain walls. The findings can prove valuable for various domain-related calculations, investigations involving X-ray diffraction for domain analysis and the description of domain-related physical properties.

8.
Small ; 20(29): e2310768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342671

ABSTRACT

There is a noticeable gap in the literature regarding research on halogen-substitution-regulated ferroelectric semiconductors featuring multiple phase transitions. Here, a new category of 1D perovskite ferroelectrics (DFP)2SbX5 (DFP+ = 3,3-difluoropyrrolidium, X- = I-, Br-, abbreviated as I-1 and Br-2) with twophase transitions (PTs) is reported. The first low-temperature PT is a mmmFmm2 ferroelectric PT, while the high-temperature PT is a counterintuitive inverse temperature symmetry-breaking PT. By the substitution of iodine with bromine, the Curie temperature (Tc) significantly increases from 348 K of I-1 to 374 K of Br-2. Their ferroelectricity and pyroelectricity are improved (Ps value from 1.3 to 4.0 µC cm-2, pe value from 0.2 to 0.48 µC cm-2 K-1 for I-1 and Br-2), while their optical bandgaps increased from 2.1 to 2.7 eV. A critical slowing down phenomenon is observed in the dielectric measurement of I-1 while Br-2 exhibits the ferroelastic domain. Structural and computational analyses elucidate that the order-disorder movement of cations and the distortion of the chain perovskite [SbX5]2- anions skeleton lead to PT. The semiconductor properties are determined by [SbX5]2- anions. The findings contribute to the development of ferroelectric semiconductors and materials with multiple PTs and provide materials for potential applications in the optoelectronic field.

9.
Acta Crystallogr A Found Adv ; 80(Pt 1): 112-128, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38059824

ABSTRACT

The concept of monoclinic ferroelectric phases has been extensively used over recent decades for the understanding of crystallographic structures of ferroelectric materials. Monoclinic phases have been actively invoked to describe the phase boundaries such as the so-called morphotropic phase boundary in functional perovskite oxides. These phases are believed to play a major role in the enhancement of such functional properties as dielectricity and electromechanical coupling through rotation of spontaneous polarization and/or modification of the rich domain microstructures. Unfortunately, such microstructures remain poorly understood due to the complexity of the subject. The goal of this work is to formulate the geometrical laws behind the monoclinic domain microstructures. Specifically, the result of previous work [Gorfman et al. (2022). Acta Cryst. A78, 158-171] is implemented to catalog and outline some properties of permissible domain walls that connect `strain' domains with monoclinic (MA/MB type) symmetry, occurring in ferroelectric perovskite oxides. The term `permissible' [Fousek & Janovec (1969). J. Appl. Phys. 40, 135-142] pertains to the domain walls connecting a pair of `strain' domains without a lattice mismatch. It was found that 12 monoclinic domains may form pairs connected along 84 types of permissible domain walls. These contain 48 domain walls with fixed Miller indices (known as W-walls) and 36 domain walls whose Miller indices may change when free lattice parameters change as well (known as S-walls). Simple and intuitive analytical expressions are provided that describe the orientation of these domain walls, the matrices of transformation between crystallographic basis vectors and, most importantly, the separation between Bragg peaks, diffracted from each of the 84 pairs of domains, connected along a permissible domain wall. It is shown that the orientation of a domain wall may be described by the specific combination of the monoclinic distortion parameters r = [2/(γ - α)][(c/a) - 1], f = (π - 2γ)/(π - 2α) and p = [2/(π - α - γ)] [(c/a) - 1]. The results of this work will enhance understanding and facilitate investigation (e.g. using single-crystal X-ray diffraction) of complex monoclinic domain microstructures in both crystals and thin films.

10.
Article in English | MEDLINE | ID: mdl-37931274

ABSTRACT

In this study, (La0.2Nd0.2Sm0.2Ho0.2Y0.2)(Nb1-xVx)O4 (0.1 ≤ x ≤ 0.4) ceramics were prepared using a high-entropy strategy via the solid-phase method. The crystal structure, microstructure, vibration modes, and phase transition were studied by X-ray diffraction, scanning electron microscopy/transmission electron microscopy (SEM/TEM), and Raman spectroscopy techniques. The phase of ceramics was confirmed to be a monoclinic fergusonite in the range of x ≤ 0.28, a tetragonal scheelite was in the range of 0.3 ≤ x ≤ 0.32, a complex phase of tetragonal scheelite, and zircon was observed in the ceramics when x ≥ 0.35. A zircon phase was also detected by TEM at x = 0.4. The ceramic at x = 0.25 exhibited outstanding temperature stabilization with εr = 18.06, Q × f = 56,300 GHz, and τf = -1.52 ppm/°C, while the x = 0.2 ceramic exhibited a low dielectric loss with εr = 18.14, Q × f = 65,200 GHz, and τf = -7.96 ppm/°C. Moreover, the permittivity, quality factor, and the temperature coefficient of resonance frequency were related to the polarizability, packing fraction, density, and the temperature coefficient of permittivity caused by phase transition. This is an effective method to regulate near-zero τf by the synergism of the high-entropy strategy and substituting Nb with V in LnNbO4 ceramics.

11.
ACS Appl Mater Interfaces ; 15(20): 24614-24621, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37163681

ABSTRACT

The comprehensive understanding of (Na0.5Bi0.5)TiO3-BaTiO3 (NBT-BT) lattice structure is highly desired to develop lead-free ferroelectric materials. However, most of the previous studies focused on the improvement of piezoelectric properties at room temperature, and many structural puzzles are left unclear. In this work, the lattice structure of a ferroelastic phase and the ferroelectric-ferroelastic transitions in both rhombohedral NBT and tetragonal NBT-8%BT single crystals are investigated in detail. Our results illustrate the complex process of the ferroelectric-ferroelastic transition of NBT. The variation of Ti-O modes and oxygen octahedra modes clearly indicates the gradual change of lattice symmetry from R3c to P4bm during a wide temperature range between 170 and 350 °C. A ferroelectric-ferroelastic transition is also confirmed in tetragonal NBT-8BT for the first time, and the lattice symmetry of P4bm is found to be maintained during the ferroelastic stage. This work reveals the lattice evolutions of the ferroelectric-ferroelastic transition of NBT-BT crystals and provides new insights for understanding the ferroelasticity and the evolution of phonon modes in a lead-free relaxor.

12.
Nano Lett ; 23(7): 2945-2951, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36972518

ABSTRACT

Utilizing advanced transmission electron microscopy (TEM), the structure at the (110)-type twin boundary (TB) of Ce-doped GdFeO3 (C-GFO) has been investigated with picometer precision. Such a TB is promising to generate local ferroelectricity within a paraelectric system, while precise knowledge about its structure is still largely missing. In this work, a direct measurement of the cation off-centering with respect to the neighboring oxygen is enabled by integrated differential phase contrast (iDPC) imaging, and up to 30 pm Gd off-centering is highly localized at the TB. Further electron energy loss spectroscopy (EELS) analysis demonstrates a slight accumulation of oxygen vacancies at the TB, a self-balanced behavior of Ce at the Gd sites, and a mixed occupation of Fe2+ and Fe3+ at the Fe sites. Our results provide an informative picture with atomic details at the TB of C-GFO, which is indispensable to further push the potential of grain boundary engineering.

13.
ACS Appl Mater Interfaces ; 15(9): 11983-11993, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36808955

ABSTRACT

BiFeO3, known as the "holy grail of all multiferroics", provides an appealing platform for exploration of multifield coupling physics and design of functional devices. Many fantastic properties of BiFeO3 are regulated by its ferroelastic domain structure. However, a facile programable control on the ferroelastic domain structure in BiFeO3 remains challenging and our understanding on the existing control strategies is also far from complete. This work reports a facile control of ferroelastic domain patterns in BiFeO3 thin films under area scanning poling by exploiting the tip bias as the control parameter. Combining scanning probe microscopy experiments and simulations, we found that BiFeO3 thin films with pristine 71° rhombohedral-phase stripe domains exhibit at least four switching pathways solely by controlling the scanning tip bias. As a result, one can readily write mesoscopic topological defects into the films without the necessity to change the tip motion. The correlation between conductance of the scanned region and the switching pathway is further investigated. Our results extend the current understanding on the domain switching kinetics and the coupled electronic transport properties in BiFeO3 thin films. The facile voltage control of ferroelastic domains should facilitate the development of configurable electronic and spintronic devices.

14.
ACS Appl Mater Interfaces ; 15(9): 12502-12510, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36848597

ABSTRACT

A local thermal strain engineering approach via an ac-heated thermal probe was incorporated into methylammonium lead triiodide (MAPbI3) crystals and acts as a driving force for ferroic twin domain dynamics, local ion migration, and property tailoring. Periodically, striped ferroic twin domains and their dynamic evolutions were successfully induced by local thermal strain and high-resolution thermal imaging, giving decisive evidence of the ferroelastic nature in MAPbI3 perovskites at room temperature. Local thermal ionic imaging and chemical mappings demonstrate that domain contrasts are from local methylammonium (MA+) redistribution into the stripes of chemical segregation in response to the local thermal strain fields. The present results reveal an inherent coupling among local thermal strains, ferroelastic twin domains, local chemical-ion segregations, and physical properties and offer a potential path to improve the functionality of metal halide perovskite-based solar cells.

15.
Chemistry ; 29(18): e202203606, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36598368

ABSTRACT

The remarkable material stability and structural diversity of two-dimensional (2D) organic-inorganic hybrid perovskites (OIHPs) constitute a vast available library of versatile materials. In particular, ferroelastic property, for which the spontaneous strain can be transformed by applying mechanical stress, is very promising for extensive nanotechnological applications. However, integrating ferroelastic property into 2D OIHPs is still in its infancy. Herein, we designed two new 2D OIHPs (C3 H5 CH2 NH3 )2 [MCl4 ] (M=Mn for 1 and Cd for 2), which undergo reversible ferroelastic phase transitions with an Aizu expression 4/mmmFmmm. The templating influence of the more distorted inorganic framework on the disordering of organic cations and the stronger hydrogen bonds has a key role in the striking improvement of Curie temperature from 246 K in 1 to 273 K in 2. Meanwhile, the minimized alteration of structural motif ensures the well maintaining of the ferroelastic performance in the forms of crystals and thin films, as demonstrated by the identifiable evolution of domain structures. This work will provide a fertile new ground for enlarging the limited number of 2D ferroelastic OIHPs with better practical utility.

16.
Small ; 19(14): e2206574, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36642812

ABSTRACT

The understanding and manipulate of the second-order corner states are central to both fundamental physics and future topotronics applications. Despite the fact that numerous second-order topological insulators (SOTIs) are achieved, the efficient engineering in a given material remains elusive. Here, the emergence of 2D multiferroics SOTIs in SbAs and BP5 monolayers is theoretically demonstrated, and an efficient and straightforward way for engineering the nontrivial corner states by ferroelasticity and ferroelectricity is remarkably proposed. With ferroelectric polarization of SbAs and BP5 monolayers, the nontrivial corner states emerge in the mirror symmetric corners and are perpendicular to orientations of the in-plane spontaneous polarization. And remarkably the spatial distribution of the corner states can be effectively tuned by a ferroelastic switching. At the intermediate states of both ferroelectric and ferroelastic switchings, the corner states disappear. These finding not only combines exotic SOTIs with multiferroics but also pave the way for experimental discovery of 2D tunable SOTIs.

17.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676277

ABSTRACT

The influence of the domain structure's initial topology and its evolution on the hysteresis curves of tetragonal and rhombohedral polydomain structures of ferroelectroelastic materials is studied. Based on the analysis of electrical and mechanical compatibility conditions, all possible variants of representative volume elements of tetragonal and rhombohedral second-rank-domain laminate structures were obtained and used in simulations. Considerable local inhomogeneity of stress and electric fields within the representative volume, as well as domain interaction, necessitates the use of numerical methods. Hysteresis curves for laminated domain patterns of the second rank were obtained using finite-element homogenization. The vector-potential finite-element formulation as the most effective method was used for solving nonlinear coupled boundary value problems of ferroelectroelasticity. A significant anisotropy of the hysteresis properties of domain structures was established both within individual phases and when comparing the tetragonal and rhombohedral phases. The proposed approach describes the effects of domain hardening and unloading nonlinearity.

18.
ACS Nano ; 16(12): 21546-21554, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36449367

ABSTRACT

Semimetallic two-dimensional (2D) Dirac materials beyond graphene, especially 2D materials with robust Dirac points against the spin-orbit coupling (SOC), are still highly sought. Herein, we theoretically demonstrate the InBi monolayer as a long-sought 2D Dirac material whose exotic Dirac Fermionic states cannot be gapped out by SOC. The InBi monolayer with the litharge crystal structure possesses not only 4-fold band degeneracy, linear energy dispersion, and ultrahigh Fermi velocity in the order of 105 m/s, but also spontaneous ferroelasticity that can lead to the orthorhombic lattice deformation and semimetallic electronic structure. Specifically, the symmetry protected spin-orbit Dirac points in 2D InBi are located at the Brillouin Zone (BZ) boundary and near the Fermi level in energy. More importantly, with coexisting spin-orbit Dirac points and spontaneous ferroelasticity, the InBi monolayer exhibits an additional advantage for engineering Dirac Fermionic states by ferroelastic (FE) strain. Energy levels of Dirac points are strongly coupled to FE strain, and the semimetallic electronic structure of the InBi monolayer is also susceptible to the FE strain induced carrier self-doping effect. Depending on the strain orientation within the InBi monolayer, electron and hole Fermi pockets will develop along the two planar directions, leading to the characteristic transport coefficients (as evidenced by our transport simulations based on Boltzmann formalism) for future experimental detection. FE strain tunable Dirac Fermionic states together with the carrier self-doping effect will benefit future development of ultrathin electronic devices with both high carrier mobility and controllable charge conductivities.

19.
Chemistry ; 28(69): e202202533, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36082618

ABSTRACT

Organic-inorganic Hybrid (OIH) materials for multifunctional switchable applications have attracted enormous attention in recent years due to their excellent optoelectronic properties and good structural tunability. However, it still remains challenging to fabricate one simple OIH compound with multi-functionals properties, such as dielectric switching, thermochromic properties, semiconductor characteristics and ferroelasticity. Under this context, we successfully synthesized [2-(2-fluorophenyl)ethan-1- ammonium]2 SnBr6 (compound 1), which has a higher phase transition temperature of 427.7 K. Additionally, it exhibits a semiconducting property with an indirect band gap of 2.36 eV. Combining ferroelastic, narrow band gap, thermochromic, and dielectric properties, compound 1 can be considered as a rarely reported multi-functional ferroelastic material, which is expected to give inspiration for broadening the applications in the smart devices field.


Subject(s)
Semiconductors , Phase Transition
20.
Adv Sci (Weinh) ; 9(31): e2203957, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36065001

ABSTRACT

The functionality of ferroelastic domain walls in ferroelectric materials is explored in real-time via the in situ implementation of computer vision algorithms in scanning probe microscopy (SPM) experiment. The robust deep convolutional neural network (DCNN) is implemented based on a deep residual learning framework (Res) and holistically nested edge detection (Hed), and ensembled to minimize the out-of-distribution drift effects. The DCNN is implemented for real-time operations on SPM, converting the data stream into the semantically segmented image of domain walls and the corresponding uncertainty. Further the pre-defined experimental workflows perform piezoresponse spectroscopy measurement on thus discovered domain walls, and alternating high- and low-polarization dynamic (out-of-plane) ferroelastic domain walls in a PbTiO3 (PTO) thin film and high polarization dynamic (out-of-plane) at short ferroelastic walls (compared with long ferroelastic walls) in a lead zirconate titanate (PZT) thin film is reported. This work establishes the framework for real-time DCNN analysis of data streams in scanning probe and other microscopies and highlights the role of out-of-distribution effects and strategies to ameliorate them in real time analytics.

SELECTION OF CITATIONS
SEARCH DETAIL