Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Appl ; 17(7): e13739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948538

ABSTRACT

The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.

2.
Mol Ecol ; 33(5): e17274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279681

ABSTRACT

Overharvest can severely reduce the abundance and distribution of a species and thereby impact its genetic diversity and threaten its future viability. Overharvest remains an ongoing issue for Arctic mammals, which due to climate change now also confront one of the fastest changing environments on Earth. The high-arctic Svalbard reindeer (Rangifer tarandus platyrhynchus), endemic to Svalbard, experienced a harvest-induced demographic bottleneck that occurred during the 17-20th centuries. Here, we investigate changes in genetic diversity, population structure, and gene-specific differentiation during and after this overharvesting event. Using whole-genome shotgun sequencing, we generated the first ancient and historical nuclear (n = 11) and mitochondrial (n = 18) genomes from Svalbard reindeer (up to 4000 BP) and integrated these data with a large collection of modern genome sequences (n = 90) to infer temporal changes. We show that hunting resulted in major genetic changes and restructuring in reindeer populations. Near-extirpation followed by pronounced genetic drift has altered the allele frequencies of important genes contributing to diverse biological functions. Median heterozygosity was reduced by 26%, while the mitochondrial genetic diversity was reduced only to a limited extent, likely due to already low pre-harvest diversity and a complex post-harvest recolonization process. Such genomic erosion and genetic isolation of populations due to past anthropogenic disturbance will likely play a major role in metapopulation dynamics (i.e., extirpation, recolonization) under further climate change. Our results from a high-arctic case study therefore emphasize the need to understand the long-term interplay of past, current, and future stressors in wildlife conservation.


Subject(s)
Reindeer , Animals , Reindeer/genetics , Animals, Wild , Gene Frequency , Genetic Drift , Svalbard
3.
Trends Ecol Evol ; 38(10): 961-969, 2023 10.
Article in English | MEDLINE | ID: mdl-37344276

ABSTRACT

Our ability to assess the threat posed by the genetic load to small and declining populations has been greatly improved by advances in genome sequencing and computational approaches. Yet, considerable confusion remains around the definitions of the genetic load and its dynamics, and how they impact individual fitness and population viability. We illustrate how both selective purging and drift affect the distribution of deleterious mutations during population size decline and recovery. We show how this impacts the composition of the genetic load, and how this affects the extinction risk and recovery potential of populations. We propose a framework to examine load dynamics and advocate for the introduction of load estimates in the management of endangered populations.


Subject(s)
Genetic Load , Genetics, Population , Population Density , Inbreeding , Genetic Variation
4.
BMC Bioinformatics ; 23(1): 228, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35698034

ABSTRACT

BACKGROUND: Many wild species have suffered drastic population size declines over the past centuries, which have led to 'genomic erosion' processes characterized by reduced genetic diversity, increased inbreeding, and accumulation of harmful mutations. Yet, genomic erosion estimates of modern-day populations often lack concordance with dwindling population sizes and conservation status of threatened species. One way to directly quantify the genomic consequences of population declines is to compare genome-wide data from pre-decline museum samples and modern samples. However, doing so requires computational data processing and analysis tools specifically adapted to comparative analyses of degraded, ancient or historical, DNA data with modern DNA data as well as personnel trained to perform such analyses. RESULTS: Here, we present a highly flexible, scalable, and modular pipeline to compare patterns of genomic erosion using samples from disparate time periods. The GenErode pipeline uses state-of-the-art bioinformatics tools to simultaneously process whole-genome re-sequencing data from ancient/historical and modern samples, and to produce comparable estimates of several genomic erosion indices. No programming knowledge is required to run the pipeline and all bioinformatic steps are well-documented, making the pipeline accessible to users with different backgrounds. GenErode is written in Snakemake and Python3 and uses Conda and Singularity containers to achieve reproducibility on high-performance compute clusters. The source code is freely available on GitHub ( https://github.com/NBISweden/GenErode ). CONCLUSIONS: GenErode is a user-friendly and reproducible pipeline that enables the standardization of genomic erosion indices from temporally sampled whole genome re-sequencing data.


Subject(s)
Computational Biology , Genome , Animals , Endangered Species , Genomics , Reproducibility of Results , Software
5.
Mol Ecol ; 30(23): 6355-6369, 2021 12.
Article in English | MEDLINE | ID: mdl-34176179

ABSTRACT

Large vertebrates are extremely sensitive to anthropogenic pressure, and their populations are declining fast. The white rhinoceros (Ceratotherium simum) is a paradigmatic case: this African megaherbivore has suffered a remarkable decline in the last 150 years due to human activities. Its subspecies, the northern (NWR) and the southern white rhinoceros (SWR), however, underwent opposite fates: the NWR vanished quickly, while the SWR recovered after the severe decline. Such demographic events are predicted to have an erosive effect at the genomic level, linked to the extirpation of diversity, and increased genetic drift and inbreeding. However, there is little empirical data available to directly reconstruct the subtleties of such processes in light of distinct demographic histories. Therefore, we generated a whole-genome, temporal data set consisting of 52 resequenced white rhinoceros genomes, representing both subspecies at two time windows: before and during/after the bottleneck. Our data reveal previously unknown population structure within both subspecies, as well as quantifiable genomic erosion. Genome-wide heterozygosity decreased significantly by 10% in the NWR and 36% in the SWR, and inbreeding coefficients rose significantly by 11% and 39%, respectively. Despite the remarkable loss of genomic diversity and recent inbreeding it suffered, the only surviving subspecies, the SWR, does not show a significant accumulation of genetic load compared to its historical counterpart. Our data provide empirical support for predictions about the genomic consequences of shrinking populations, and our findings have the potential to inform the conservation efforts of the remaining white rhinoceroses.


Subject(s)
Anthropogenic Effects , Perissodactyla , Animals , Genomics , Inbreeding , Perissodactyla/genetics
6.
Curr Biol ; 29(22): 3921-3927.e5, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31679927

ABSTRACT

Evidence of eukaryote-to-eukaryote lateral gene transfer (LGT) has accumulated in recent years [1-14], but the selective pressures governing the evolutionary fate of these genes within recipient species remain largely unexplored [15, 16]. Among non-parasitic plants, successful LGT has been reported between different grass species [5, 8, 11, 16-19]. Here, we use the grass Alloteropsis semialata, a species that possesses multigene LGT fragments that were acquired recently from distantly related grass species [5, 11, 16], to test the hypothesis that the successful LGT conferred an advantage and were thus rapidly swept into the recipient species. Combining whole-genome and population-level RAD sequencing, we show that the multigene LGT fragments were rapidly integrated in the recipient genome, likely due to positive selection for genes encoding proteins that added novel functions. These fragments also contained physically linked hitchhiking protein-coding genes, and subsequent genomic erosion has generated gene presence-absence polymorphisms that persist in multiple geographic locations, becoming part of the standing genetic variation. Importantly, one of the hitchhiking genes underwent a secondary rapid spread in some populations. This shows that eukaryotic LGT can have a delayed impact, contributing to local adaptation and intraspecific ecological diversification. Therefore, while short-term LGT integration is mediated by positive selection on some of the transferred genes, physically linked hitchhikers can remain functional and augment the standing genetic variation with delayed adaptive consequences.


Subject(s)
Gene Transfer, Horizontal/genetics , Poaceae/genetics , Biological Evolution , Evolution, Molecular , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genome/genetics , Phylogeny
7.
Biol Lett ; 15(9): 20190491, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31480938

ABSTRACT

Human intervention, pre-human climate change (or a combination of both), as well as genetic effects, contribute to species extinctions. While many species from oceanic islands have gone extinct due to direct human impacts, the effects of pre-human climate change and human settlement on the genomic diversity of insular species and the role that loss of genomic diversity played in their extinctions remains largely unexplored. To address this question, we sequenced whole genomes of two extinct New Zealand passerines, the huia (Heteralocha acutirostris) and South Island kokako (Callaeas cinereus). Both species showed similar demographic trajectories throughout the Pleistocene. However, the South Island kokako continued to decline after the last glaciation, while the huia experienced some recovery. Moreover, there was no indication of inbreeding resulting from recent mating among closely related individuals in either species. This latter result indicates that population fragmentation associated with forest clearing by Maori may not have been strong enough to lead to an increase in inbreeding and exposure to genomic erosion. While genomic erosion may not have directly contributed to their extinctions, further habitat fragmentation and the introduction of mammalian predators by Europeans may have been an important driver of extinction in huia and South Island kokako.


Subject(s)
Extinction, Biological , Genome , Animals , Ecosystem , Genomics , New Zealand
8.
BMC Genomics ; 20(1): 472, 2019 Jun 10.
Article in English | MEDLINE | ID: mdl-31182035

ABSTRACT

BACKGROUND: Symbiotic relationships between animals and bacteria have profound impacts on the evolutionary trajectories of each partner. Animals and gut bacteria engage in a variety of relationships, occasionally persisting over evolutionary timescales. Ants are a diverse group of animals that engage in many types of associations with taxonomically distinct groups of bacterial associates. Here, we bring into culture and characterize two closely-related strains of gut associated Acetobacteraceae (AAB) of the red carpenter ant, Camponotus chromaiodes. RESULTS: Genome sequencing, assembly, and annotation of both strains delineate stark patterns of genomic erosion and sequence divergence in gut associated AAB. We found widespread horizontal gene transfer (HGT) in these bacterial associates and report elevated gene acquisition associated with energy production and conversion, amino acid and coenzyme transport and metabolism, defense mechanisms, and lysine export. Both strains have acquired the complete NADH-quinone oxidoreductase complex, plausibly from an Enterobacteriaceae origin, likely facilitating energy production under diverse conditions. Conservation of several lysine biosynthetic and salvage pathways and accumulation of lysine export genes via HGT implicate L-lysine supplementation by both strains as a potential functional benefit for the host. These trends are contrasted by genome-wide erosion of several amino acid biosynthetic pathways and pathways in central metabolism. We perform phylogenomic analyses on both strains as well as several free living and host associated AAB. Based on their monophyly and deep divergence from other AAB, these C. chromaiodes gut associates may represent a novel genus. Together, our results demonstrate how extensive horizontal transfer between gut associates along with genome-wide deletions leads to mosaic metabolic pathways. More broadly, these patterns demonstrate that HGT and genomic erosion shape metabolic capabilities of persistent gut associates and influence their genomic evolution. CONCLUSIONS: Using comparative genomics, our study reveals substantial changes in genomic content in persistent associates of the insect gastrointestinal tract and provides evidence for the evolutionary pressures inherent to this environment. We describe patterns of genomic erosion and horizontal acquisition that result in mosaic metabolic pathways. Accordingly, the phylogenetic position of both strains of these associates form a divergent, monophyletic clade sister to gut associates of honey bees and more distantly to Gluconobacter.


Subject(s)
Acetobacteraceae/genetics , Gene Transfer, Horizontal , Acetobacteraceae/classification , Acetobacteraceae/metabolism , Animals , Ants/microbiology , Evolution, Molecular , Gastrointestinal Tract/microbiology , Genomics , Metabolic Networks and Pathways/genetics , Phylogeny , Symbiosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL