Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Lancet Reg Health Southeast Asia ; 27: 100436, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39049977

ABSTRACT

Background: Ensuring equitable physical access to SARS-CoV-2 testing has proven to be crucial for controlling the COVID-19 epidemic, especially in countries like Nepal with its challenging terrain. During the second wave of the pandemic in May 2021, there was immense pressure to expand the laboratory network in Nepal to ensure calibration of epidemic response. The expansion led to an increase in the number of testing facilities from 69 laboratories in May 2021 to 89 laboratories by November 2021. We assessed the equity of physical access to COVID-19 testing facilities in Nepal during 2021. Furthermore, we investigated the potential of mathematical optimisation in improving accessibility to COVID-19 testing facilities. Methods: Based on up-to-date publicly available data sets and on the COVID-19-related daily reports published by Nepal's Ministry of Health and Population from May 1 to November 15, 2021, we measured the disparities in geographical accessibility to COVID-19 testing across Nepal at a resolution of 1 km2. In addition, we proposed an optimisation model to prescribe the best possible locations to set up testing laboratories maximizing access, and tested its potential impact in Nepal. Findings: The analysis identified vulnerable districts where, despite ramping up efforts, physical accessibility to testing facilities remains low under two modes of travel-walking and motorized driving. Both geographical accessibility and its equality were better under the motorised mode compared with the walking mode. If motorised transportation were available to everyone, the population coverage within 60 min of any testing facility (public and private) would be close to threefold the coverage for pedestrians within the same hour: 61.4% motorised against 22.2% pedestrian access within the hour, considering the whole population of Nepal. Very low accessibility was found in most areas except those with private test centres concentrated in the capital city of Kathmandu. The hypothetical use of mathematical optimisation to select 20 laboratories to add to the original 69 could have improved access from the observed 61.4% offered by the laboratories operating in November to 71.4%, if those 20 could be chosen optimally from all existing healthcare facilities in Nepal. In mountainous terrain, accessibility is very low and could not be improved, even considering all existing healthcare facilities as potential testing locations. Interpretation: The findings related to geographical accessibility to COVID-19 testing facilities should provide valuable information for health-related planning in Nepal, especially in emergencies where data might be limited and decisions time-sensitive. The potential use of publicly available data and mathematical optimisation could be considered in the future. Funding: WHO Special Programme for Research and Training in Tropical Diseases (TDR).

2.
Health Place ; 87: 103238, 2024 May.
Article in English | MEDLINE | ID: mdl-38677137

ABSTRACT

By using geospatial information such as participants' residential history along with external datasets of environmental exposures, ongoing studies can enrich their cohorts to investigate the role of the environment on brain-behavior health outcomes. However, challenges may arise if clear guidance and key quality control steps are not taken at the outset of data collection of residential information. Here, we detail the protocol development aimed at improving the collection of lifetime residential address information from the Adolescent Brain Cognitive Development (ABCD) Study. This protocol generates a workflow for minimizing gaps in residential information, improving data collection processes, and reducing misclassification error in exposure estimates.


Subject(s)
Data Collection , Environmental Exposure , Humans , Adolescent , Data Collection/methods , Environmental Exposure/adverse effects , Female , Male , Residence Characteristics
3.
Sci Rep ; 14(1): 9800, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684705

ABSTRACT

With the rapid advancement of urbanization and industrialization, ecological patches within cities and towns are fragmented and ecological corridors are cut off, regional ecological security is threatened and sustainable development is hindered. Building an ecological network that conforms to regional realities can connect fragmented patches, protect biodiversity and regional characteristics, and provide scientific reference for regional ecological protection and ecological network planning. By taking Qilin District, the main urban area of Qujing City as an example, and using geospatial data as the main data source, based on morphological spatial pattern analysis (MSPA) and minimum cumulative resistance (MCR), this study identified ecological source areas, extracted ecological corridors, and build & optimize ecological networks. (1) All landscape types are identified based on MSPA, the proportion of core area was the highest among all landscape types, which was 80.69%, combined with the connectivity evaluation, 14 important ecological source areas were selected. (2) 91 potential ecological corridors were extracted through MCR and gravity models, there were 16 important ones. (3) The network connectivity analysis method is used to calculate the α, ß, and γ indexes of the ecological network before optimization, which were 2.36, 6.5, and 2.53, while after optimization, α, ß and γ indices were 3.8, 9.5 and 3.5, respectively. The combined application of MSPA-MCR model and ecological network connectivity analysis evaluation is conducive to improving the structure and functionality of ecological network.

4.
J Imaging ; 10(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535133

ABSTRACT

In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data, including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory, which goes beyond the traditional transportation elements to include street furniture objects that are important for accessibility but are often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following three questions. First, how can mobile LiDAR technology be leveraged to produce comprehensive pedestrian-accessible infrastructure inventory? Second, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Third, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our proposed method is designed to efficiently create pedestrian-accessible infrastructure inventory through the zero-shot segmentation of multi-sourced geospatial datasets. Through addressing three research questions, we show how the multi-mode data should be prepared, what data representation works best for what asset features, and how SAM performs on these data presentations. Our findings indicate that street-view images generated from mobile LiDAR point-cloud data, when paired with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities, such as individuals who are blind, have low vision, or experience mobility disabilities.

5.
Accid Anal Prev ; 200: 107491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489941

ABSTRACT

Freight truck-related crashes in urban contexts have caused significant economic losses and casualties, making it increasingly essential to understand the spatial patterns of such crashes. Limitations regarding data availability have greatly undermined the generalizability and applicability of certain prior research findings. This study explores the potential of emerging geospatial data to delve deeply into the determinants of these incidents with a more generalizable research design. By synergizing high-resolution satellite imagery with refined GIS map data and geospatial tabular data, a rich tapestry of the road environment and freight truck operations emerges. To navigate the challenges of zero-inflated issues of the crash datasets, the Tweedie Gradient Boosting model is adopted. Results reveal a pronounced spatial heterogeneity between highway and urban non-highway road networks in crash determinants. Factors such as freight truck activity, intricate road network patterns, and vehicular densities rise to prominence, albeit with varying degrees of influence across highways and urban non-highway terrains. Results emphasize the need for context-specific interventions for policymakers, encompassing optimized urban planning, infrastructural overhauls, and refined traffic management protocols. This endeavor may not only elevate the academic discourse around freight truck-related crashes but also champion a data-driven approach towards safer road ecosystems for all.


Subject(s)
Accidents, Traffic , Ecosystem , Humans , Accidents, Traffic/prevention & control , Satellite Imagery , Motor Vehicles
6.
Parasit Vectors ; 17(1): 86, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395867

ABSTRACT

BACKGROUND: Cystic echinococcosis (CE), caused by the larval stage of Echinococcus granulosus sensu lato, is a zoonotic parasitic disease of economic and public health importance worldwide, especially in the Mediterranean area. Canids are the main definitive hosts of the adult cestode contaminating the environment with parasite eggs released with feces. In rural and peri-urban areas, the risk of transmission to livestock as well as humans is high because of the free-roaming behavior of owned/not owned dogs. Collecting data on animal movements and behavior using GPS dataloggers could be a milestone to contain the spread of this parasitosis. Thus, this study aims to develop a comprehensive control strategy, focused on deworming a dog population in a pilot area of southern Italy (Campania region) highly endemic for CE. METHODS: Accordingly, five sheep farms, tested to be positive for CE, were selected. In each sheep farm, all shepherd dogs present were treated every 2 months with praziquantel. Furthermore, 15 GPS dataloggers were applied to sheep and dogs, and their movements were tracked for 1 month; the distances that they traveled and their respective home ranges were determined using minimum convex polygon (MCP) analysis with a convex hull geometry as output. RESULTS: The results showed that the mean daily walking distances traveled by sheep and dogs did not significantly differ. Over 90% of the point locations collected by GPS fell within 1500 mt of the farm, and the longest distances were traveled between 10:00 and 17:00. In all the sheep farms monitored, the area traversed by the animals during their daily activities showed an extension of < 250 hectares. Based on the home range of the animals, the area with the highest risk of access from canids (minimum safe convex polygon) was estimated around the centroid of each farm, and a potential scheme for the delivery of praziquantel-laced baits for the treatment of not owned dogs gravitating around the grazing area was designed. CONCLUSIONS: This study documents the usefulness of geospatial technology in supporting parasite control strategies to reduce disease transmission.


Subject(s)
Dog Diseases , Echinococcosis , Echinococcus granulosus , Humans , Adult , Animals , Dogs , Sheep , Praziquantel/therapeutic use , Dog Diseases/drug therapy , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Echinococcosis/drug therapy , Echinococcosis/epidemiology , Echinococcosis/prevention & control , Zoonoses
7.
J Community Health ; 49(1): 91-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37507525

ABSTRACT

Occupational exposure to SARS-CoV-2 varies by profession, but "essential workers" are often considered in aggregate in COVID-19 models. This aggregation complicates efforts to understand risks to specific types of workers or industries and target interventions, specifically towards non-healthcare workers. We used census tract-resolution American Community Survey data to develop novel essential worker categories among the occupations designated as COVID-19 Essential Services in Massachusetts. Census tract-resolution COVID-19 cases and deaths were provided by the Massachusetts Department of Public Health. We evaluated the association between essential worker categories and cases and deaths over two phases of the pandemic from March 2020 to February 2021 using adjusted mixed-effects negative binomial regression, controlling for other sociodemographic risk factors. We observed elevated COVID-19 case incidence in census tracts in the highest tertile of workers in construction/transportation/buildings maintenance (Phase 1: IRR 1.32 [95% CI 1.22, 1.42]; Phase 2: IRR: 1.19 [1.13, 1.25]), production (Phase 1: IRR: 1.23 [1.15, 1.33]; Phase 2: 1.18 [1.12, 1.24]), and public-facing sales and services occupations (Phase 1: IRR: 1.14 [1.07, 1.21]; Phase 2: IRR: 1.10 [1.06, 1.15]). We found reduced case incidence associated with greater percentage of essential workers able to work from home (Phase 1: IRR: 0.85 [0.78, 0.94]; Phase 2: IRR: 0.83 [0.77, 0.88]). Similar trends exist in the associations between essential worker categories and deaths, though attenuated. Estimating industry-specific risk for essential workers is important in targeting interventions for COVID-19 and other diseases and our categories provide a reproducible and straightforward way to support such efforts.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Occupations , Industry , Massachusetts/epidemiology
8.
Sensors (Basel) ; 23(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37836850

ABSTRACT

The coastal zone is an area that includes the sea coast and adjacent parts of the land and sea, where the mutual interaction of these environments is clearly marked. Hence, the modelling of the land and seabed parts of the coastal zone is crucial and necessary in order to determine the dynamic changes taking place in this area. The accurate determination of the terrain in the coastal zone is now possible thanks to the use of Unmanned Aerial Vehicles (UAVs) and Unmanned Surface Vehicles (USVs). The aim of this article is to present land and seabed surface modelling in the coastal zone using UAV/USV-based data integration. Bathymetric and photogrammetric measurements were carried out on the waterbody adjacent to a public beach in Gdynia (Poland) in 2022 using the DJI Phantom 4 Real Time Kinematic (RTK) UAV and the AutoDron USV. As a result of geospatial data integration, topo-bathymetric models in the coastal zone were developed using the following terrain-modelling methods: Inverse Distance to a Power (IDP), kriging, Modified Shepard's Method (MSM) and Natural Neighbour Interpolation (NNI). Then, the accuracies of the selected models obtained using the different interpolation methods, taking into account the division into land and seabed parts, were analysed. Research has shown that the most accurate method for modelling both the land and seabed surfaces of the coastal zone is the kriging (linear model) method. The differences between the interpolated and measurement values of the R95 measurement are 0.032 m for the land part and 0.034 m for the seabed part. It should also be noted that the data interpolated by the kriging (linear model) method showed a very good fit to the measurement data recorded by the UAVs and USVs.

9.
MethodsX ; 11: 102426, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867915

ABSTRACT

A classic optimization problem with many real-world applications is optimal route search in graphs or networks. Graphical networks resembling real world networks are an important requirement for these studies. Python packages NetworkX and OSMnx are probably the most popular approaches in industry for creating and analyzing real world graphical networks using ESRI Shapefiles (Geospatial Vector Data). However, creating such a network is a complex and tedious process as these packages require the input data to be in a specific format. In this study,•We outline a flexible method that can be used to easily create graphical network representations in NetworkX or OSMnx using road network topology data stored in ESRI Shapefiles.•A detailed step-by-step process is outlined to successfully transform the ESRI Shapefile data into the compatible format for graph analysis libraries like OSMnx and NetworkX.•A data cleaning strategy is suggested to reduce resource consumption without distorting the actual structure of the graph.This method will allow researchers to efficiently generate graphical networks and validate their theories by evaluating their efficiencies using real-world network data of different sizes and topologies. This method could benefit, but is not limited to, research areas such as Advanced Transportation Systems (ATS), Graph Neural Networks (GNN), Multi-Objective Genetic Algorithms, to mention a few.

10.
Sensors (Basel) ; 23(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765972

ABSTRACT

The increasing popularity of mHealth presents an opportunity for collecting rich datasets using mobile phone applications (apps). Our health-monitoring mobile application uses motion detection to track an individual's physical activity and location. The data collected are used to improve health outcomes, such as reducing the risk of chronic diseases and promoting healthier lifestyles through analyzing physical activity patterns. Using smartphone motion detection sensors and GPS receivers, we implemented an energy-efficient tracking algorithm that captures user locations whenever they are in motion. To ensure security and efficiency in data collection and storage, encryption algorithms are used with serverless and scalable cloud storage design. The database schema is designed around Mobile Advertising ID (MAID) as a unique identifier for each device, allowing for accurate tracking and high data quality. Our application uses Google's Activity Recognition Application Programming Interface (API) on Android OS or geofencing and motion sensors on iOS to track most smartphones available. In addition, our app leverages blockchain and traditional payments to streamline the compensations and has an intuitive user interface to encourage participation in research. The mobile tracking app was tested for 20 days on an iPhone 14 Pro Max, finding that it accurately captured location during movement and promptly resumed tracking after inactivity periods, while consuming a low percentage of battery life while running in the background.


Subject(s)
Blockchain , Mobile Applications , Smartphone , Advertising , Algorithms
11.
Sensors (Basel) ; 23(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37571627

ABSTRACT

Algorithms for machine learning have found extensive use in numerous fields and applications. One important aspect of effectively utilizing these algorithms is tuning the hyperparameters to match the specific task at hand. The selection and configuration of hyperparameters directly impact the performance of machine learning models. Achieving optimal hyperparameter settings often requires a deep understanding of the underlying models and the appropriate optimization techniques. While there are many automatic optimization techniques available, each with its own advantages and disadvantages, this article focuses on hyperparameter optimization for well-known machine learning models. It explores cutting-edge optimization methods such as metaheuristic algorithms, deep learning-based optimization, Bayesian optimization, and quantum optimization, and our paper focused mainly on metaheuristic and Bayesian optimization techniques and provides guidance on applying them to different machine learning algorithms. The article also presents real-world applications of hyperparameter optimization by conducting tests on spatial data collections for landslide susceptibility mapping. Based on the experiment's results, both Bayesian optimization and metaheuristic algorithms showed promising performance compared to baseline algorithms. For instance, the metaheuristic algorithm boosted the random forest model's overall accuracy by 5% and 3%, respectively, from baseline optimization methods GS and RS, and by 4% and 2% from baseline optimization methods GA and PSO. Additionally, for models like KNN and SVM, Bayesian methods with Gaussian processes had good results. When compared to the baseline algorithms RS and GS, the accuracy of the KNN model was enhanced by BO-TPE by 1% and 11%, respectively, and by BO-GP by 2% and 12%, respectively. For SVM, BO-TPE outperformed GS and RS by 6% in terms of performance, while BO-GP improved results by 5%. The paper thoroughly discusses the reasons behind the efficiency of these algorithms. By successfully identifying appropriate hyperparameter configurations, this research paper aims to assist researchers, spatial data analysts, and industrial users in developing machine learning models more effectively. The findings and insights provided in this paper can contribute to enhancing the performance and applicability of machine learning algorithms in various domains.

12.
Int J Med Inform ; 177: 105163, 2023 09.
Article in English | MEDLINE | ID: mdl-37517299

ABSTRACT

BACKGROUND: Timely care in the health sector is essential for the recovery of patients, and even more so in the case of a health emergency. In these cases, appropriate management of human and technical resources is essential. These are limited and must be mobilised in an optimal and efficient manner. OBJECTIVE: This paper analyses the use of the health emergency service in a city, Jaén, in the south of Spain. The study is focused on the most recurrent case in this service, respiratory diseases. METHODS: Machine Learning algorithms are used in which the input variables are multisource data and the target attribute is the prediction of the number of health emergency demands that will occur for a selected date. Health, social, economic, environmental, and geospatial data related to each of the emergency demands were integrated and related. Linear and nonlinear regression algorithms were used: support vector machine (SVM) with linear kernel and generated linear model (GLM), and the nonlinear SVM with Gaussian kernel. RESULTS: Predictive models of emergency demand due to respiratory disseases were generated with am absolute error better than 35 %. CONCLUSIONS: This model helps to make decisions on the efficient sizing of emergency health resources to manage and respond in the shortest possible time to patients with respiratory diseases requiring urgent care in the city of Jaén.


Subject(s)
Emergency Medical Services , Respiratory Tract Diseases , Humans , Algorithms , Machine Learning , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/therapy , Support Vector Machine , Delivery of Health Care
13.
J King Saud Univ Comput Inf Sci ; 35(5): 101558, 2023 May.
Article in English | MEDLINE | ID: mdl-37251782

ABSTRACT

Efficient contact tracing is a crucial step in preventing the spread of COVID-19. However, the current methods rely heavily on manual investigation and truthful reporting by high-risk individuals. Mobile applications and Bluetooth-based contact tracing methods have also been adopted, but privacy concerns and reliance on personal data have limited their effectiveness. To address these challenges, in this paper, a geospatial big data method that combines person reidentification and geospatial information for contact tracing is proposed. The proposed real-time person reidentification model can identify individuals across multiple surveillance cameras, and the surveillance data is fused with geographic information and mapped onto a 3D geospatial model to track movement trajectories. After real-world verification, the proposed method achieves a first accuracy rate of 91.56%, a first-five accuracy rate of 97.70%, and a mean average precision of 78.03% with an inference speed of 13 ms per image. Importantly, the proposed method does not rely on personal information, mobile phones, or wearable devices, avoiding the limitations of existing contact tracing schemes and providing significant implications for public health in the post-COVID-19 era.

14.
Transp Res Rec ; 2677(4): 946-959, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37153202

ABSTRACT

The year 2020 has marked the spread of a global pandemic, COVID-19, challenging many aspects of our daily lives. Different organizations have been involved in controlling this outbreak. The social distancing intervention is deemed to be the most effective policy in reducing face-to-face contact and slowing down the rate of infections. Stay-at-home and shelter-in-place orders have been implemented in different states and cities, affecting daily traffic patterns. Social distancing interventions and fear of the disease resulted in a traffic decline in cities and counties. However, after stay-at-home orders ended and some public places reopened, traffic gradually started to revert to pre-pandemic levels. It can be shown that counties have diverse patterns in the decline and recovery phases. This study analyzes county-level mobility change after the pandemic, explores the contributing factors, and identifies possible spatial heterogeneity. To this end, 95 counties in Tennessee have been selected as the study area to perform geographically weighted regressions (GWR) models. The results show that density on non-freeway roads, median household income, percent of unemployment, population density, percent of people over age 65, percent of people under age 18, percent of work from home, and mean time to work are significantly correlated with vehicle miles traveled change magnitude in both decline and recovery phases. Also, the GWR estimation captures the spatial heterogeneity and local variation in coefficients among counties. Finally, the results imply that the recovery phase could be estimated depending on the identified spatial attributes. The proposed model can help agencies and researchers estimate and manage decline and recovery based on spatial factors in similar events in the future.

15.
J Geogr Syst ; : 1-19, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36811088

ABSTRACT

Time geography is widely used by geographers as a model for understanding accessibility. Recent changes in how access is created, an increasing awareness of the need to better understand individual variability in access, and growing availability of detailed spatial and mobility data have created an opportunity to build more flexible time geography models. Our goal is to outline a research agenda for a modern time geography that allows new modes of access and a variety of data to flexibly represent the complexity of the relationship between time and access. A modern time geography is more able to nuance individual experience and creates a pathway for monitoring progress toward inclusion. We lean on the original work by Hägerstrand and the field of movement GIScience to develop both a framework and research roadmap that, if addressed, can enhance the flexibility of time geography to help ensure time geography will continue as a cornerstone of accessibility research. The proposed framework emphasizes the individual and differentiates access based on how individuals experience internal, external, and structural factors. To enhance nuanced representation of inclusion and exclusion, we propose research needs, focusing efforts on implementing flexible space-time constraints, inclusion of definitive variables, addressing mechanisms for representing and including relative variables, and addressing the need to link between individual and population scales of analysis. The accelerated digitalization of society, including availability of new forms of digital spatial data, combined with a focus on understanding how access varies across race, income, sexual identity, and physical limitations requires new consideration for how we include constraints in our studies of access. It is an exciting era for time geography and there are massive opportunities for all geographers to consider how to incorporate new realities and research priorities into time geography models, which have had a long tradition of supporting theory and implementation of accessibility research.

16.
Ann Fam Med ; 21(Suppl 2): S68-S74, 2023 02.
Article in English | MEDLINE | ID: mdl-36849484

ABSTRACT

PURPOSE: Integrating social care into clinical care requires substantial resources. Use of existing data through a geographic information system (GIS) has the potential to support efficient and effective integration of social care into clinical settings. We conducted a scoping literature review characterizing its use in primary care settings to identify and address social risk factors. METHODS: In December 2018, we searched 2 databases and extracted structured data for eligible articles that (1) described the use of GIS in clinical settings to identify and/or intervene on social risks, (2) were published between December 2013 and December 2018, and (3) were based in the United States. Additional studies were identified by examining references. RESULTS: Of the 5,574 articles included for review, 18 met study eligibility criteria: 14 (78%) were descriptive studies, 3 (17%) tested an intervention, and 1 (6%) was a theoretical report. All studies used GIS to identify social risks (increase awareness); 3 studies (17%) described interventions to address social risks, primarily by identifying relevant community resources and aligning clinical services to patients' needs. CONCLUSIONS: Most studies describe associations between GIS and population health outcomes; however, there is a paucity of literature regarding GIS use to identify and address social risk factors in clinical settings. GIS technology may assist health systems seeking to address population health outcomes through alignment and advocacy; its current application in clinical care delivery is infrequent and largely limited to referring patients to local community resources.


Subject(s)
Social Support , Technology , Humans , Databases, Factual
17.
Int J Health Geogr ; 22(1): 2, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707823

ABSTRACT

This article begins by briefly examining the multitude of ways in which climate and climate change affect human health and wellbeing. It then proceeds to present a quick overview of how geospatial data, methods and tools are playing key roles in the measurement, analysis and modelling of climate change and its effects on human health. Geospatial techniques are proving indispensable for making more accurate assessments and estimates, predicting future trends more reliably, and devising more optimised climate change adaptation and mitigation plans.


Subject(s)
Climate Change , Public Health , Humans
18.
Article in English | MEDLINE | ID: mdl-36294134

ABSTRACT

Efficient and accurate dengue risk prediction is an important basis for dengue prevention and control, which faces challenges, such as downloading and processing multi-source data to generate risk predictors and consuming significant time and computational resources to train and validate models locally. In this context, this study proposed a framework for dengue risk prediction by integrating big geospatial data cloud computing based on Google Earth Engine (GEE) platform and artificial intelligence modeling on the Google Colab platform. It enables defining the epidemiological calendar, delineating the predominant area of dengue transmission in cities, generating the data of risk predictors, and defining multi-date ahead prediction scenarios. We implemented the experiments based on weekly dengue cases during 2013-2020 in the Federal District and Fortaleza, Brazil to evaluate the performance of the proposed framework. Four predictors were considered, including total rainfall (Rsum), mean temperature (Tmean), mean relative humidity (RHmean), and mean normalized difference vegetation index (NDVImean). Three models (i.e., random forest (RF), long-short term memory (LSTM), and LSTM with attention mechanism (LSTM-ATT)), and two modeling scenarios (i.e., modeling with or without dengue cases) were set to implement 1- to 4-week ahead predictions. A total of 24 models were built, and the results showed in general that LSTM and LSTM-ATT models outperformed RF models; modeling could benefit from using historical dengue cases as one of the predictors, and it makes the predicted curve fluctuation more stable compared with that only using climate and environmental factors; attention mechanism could further improve the performance of LSTM models. This study provides implications for future dengue risk prediction in terms of the effectiveness of GEE-based big geospatial data processing for risk predictor generation and Google Colab-based risk modeling and presents the benefits of using historical dengue data as one of the input features and the attention mechanism for LSTM modeling.


Subject(s)
Deep Learning , Dengue , Humans , Brazil/epidemiology , Dengue/epidemiology , Artificial Intelligence , Search Engine , Forecasting
19.
Open Res Eur ; 2: 48, 2022.
Article in English | MEDLINE | ID: mdl-37645331

ABSTRACT

Background: Geospatial linked data brings into the scope of the Semantic Web and its technologies, a wealth of datasets that combine semantically-rich descriptions of resources with their geo-location. There are, however, various Semantic Web technologies where technical work is needed in order to achieve the full integration of geospatial data, and federated query processing is one of these technologies. Methods: In this paper, we explore the idea of annotating data sources with a bounding polygon that summarizes the spatial extent of the resources in each data source, and of using such a summary as an (additional) source selection criterion in order to reduce the set of sources that will be tested as potentially holding relevant data. We present our source selection method, and we discuss its correctness and implementation. Results: We evaluate the proposed source selection using three different types of summaries with different degrees of accuracy, against not using geospatial summaries. We use datasets and queries from a practical use case that combines crop-type data with water availability data for food security. The experimental results suggest that more complex summaries lead to slower source selection times, but also to more precise exclusion of unneeded sources. Moreover, we observe the source selection runtime is (partially or fully) recovered by shorter planning and execution runtimes. As a result, the federated sources are not burdened by pointless querying from the federation engine. Conclusions: The evaluation draws on data and queries from the agroenvironmental domain and shows that our source selection method substantially improves the effectiveness of federated GeoSPARQL query processing.

20.
J Appl Gerontol ; 41(4): 1186-1195, 2022 04.
Article in English | MEDLINE | ID: mdl-34719296

ABSTRACT

This study aimed to examine the feasibility of using global positioning system (GPS) watches to examine relationships between GPS-based life-space mobility (LSM) metrics and self-report LSM and health measures (physical, psychological, and cognitive function) among older adults. Thirty participants wore a Fitbit Surge for 3 days. Eight spatial and temporal LSM measures were derived from GPS data. About 90% of in-home movement speeds were zero, indicating the sedentary lifestyle, but they made some active out-of-home trips as the total distance traveled and size of movement area indicated. There was a significant difference in total distance traveled and 95th percentile of movement speed between mild cognitive and intact cognition groups. GPS-based higher proportion of out-of-home time was significantly associated with greater functional fitness. Greater GPS use hours were significantly associated with higher cognition. These findings suggest the potential of GPS watches to continuously monitor changes in functional health to inform prevention efforts.


Subject(s)
Geographic Information Systems , Aged , Humans , Self Report
SELECTION OF CITATIONS
SEARCH DETAIL