Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Anim Microbiome ; 6(1): 33, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902845

ABSTRACT

BACKGROUND: The gut microbiota plays an important role in the development of behavior and immunity in infants and juveniles. Early weaning (EW), a form of social stress in mice, leads to increased anxiety and an enhanced stress response in the hypothalamic-pituitary-adrenal axis during adulthood. Early life stress also modulates the immune system and increases vulnerability to infection. However, studies investigating the causal relationships among juvenile stress, microbiota changes, and immune and behavioral deficits are limited. Therefore, we hypothesized that EW alters gut microbiota composition and impairs the development of the nervous and immune systems. RESULTS: EW mice moved longer distances in the marble-burying test and had longer immobility times in the tail suspension test than normal weaning (NW) mice. In parallel, the gut microbiome composition differed between NW and EW mice, and the abundance of Erysipelotrichacea in EW mice at 8 weeks of age was lower than that in NW mice. In an empirical study, germ-free mice colonized with the gut microbiota of EW mice (GF-EW mice) demonstrated higher depressive behavior than GF mice colonized with normal weaning microbiota (GF-NW mice). Immune cell profiles were also affected by the EW microbiota colonization; the number of CD4 + T cells in the spleen was reduced in GF-EW mice. CONCLUSION: Our results suggest that EW-induced alterations in the gut microbiota cause depressive behaviors and modulate the immune system.

2.
J Genet Genomics ; 48(9): 815-824, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34400364

ABSTRACT

Carrageenans (CGNs) are widely used in foods and pharmaceuticals although their safety remains controversial. To investigate the effects of CGNs and CGN-degrading bacteria in the human colon, we screened for CGN degradation by human fecal microbiota, and for inflammatory response to CGNs and/or CGN-degrading bacteria in germ free mice. Thin-layer chromatography indicated that high molecular weight (MW) CGNs (≥100 kDa) remained undegraded in the presence of human fecal microbiota, whereas low MW CGNs, i.e., κ-carrageenan oligosaccharides (KCO, ~4.5 kDa) were degraded when exposed to seven of eight human fecal samples, although sulfate groups were not removed during degradation. Bacteroides xylanisolvens and Escherichia coli isolates from fecal samples apparently degraded KCO synergistically, with B. xylanisolvens serving as the primary degrader. Combined treatment of KCO with KCO-degrading bacteria led to greater pro-inflammatory effects in the colon and rectum of germ-free mice than either KCO or bacteria alone. Similarly, p-p38-, CD3-, and CD79a-positive immune cells were more abundant in combined treatment group mice than in either single treatment group. Our study shows that KCO-degrading bacteria and the low MW products of KCO can promote proinflammatory effects in mice, and represent two key markers for evaluating CGN safety in foods or medicines.


Subject(s)
Carrageenan
3.
Neurosci Res ; 168: 64-75, 2021 Jul.
Article in English | MEDLINE | ID: mdl-32017965

ABSTRACT

Microbiome composition has a pivotal role in neurobehavioral development. However, there is limited information about the role of the microbiome in sociability of mice in complex social contexts. Germ-free (GF) mice were reared in a microbiota-free environment until postnatal day 21 and then transferred to a room containing specific pathogen free (SPF) mice. At 9 weeks old, group social behaviors were measured for three GF mice and three SPF mice unfamiliar to each other. GF mice spent less time in the center area of the arena and there were longer inter-individual distances compared with SPF mice. GF mice also had decreased brain-derived neurotrophic factor (BDNF) and increased ΔFosB mRNA in the prefrontal cortex compared to SPF mice. There were differences in the gut microbiome composition between GF and SPF mice; however, if cohabitating after weaning, then their microbiome composition became equivalent and group differences in behavior and BDNF and ΔFosB mRNA expression disappeared. These results demonstrate that the bacterial community can modulate neural systems that are involved in sociability and anxiety during the developmental period and suggest that sociability and anxiety can be shaped depending on the microbiome environment through interaction with conspecifics.


Subject(s)
Anxiety , Gastrointestinal Microbiome , Animals , Mice , Prefrontal Cortex , Social Behavior , Specific Pathogen-Free Organisms
4.
Front Immunol ; 11: 570296, 2020.
Article in English | MEDLINE | ID: mdl-33154750

ABSTRACT

Paneth cells contribute to intestinal innate immunity by sensing bacteria and secreting α-defensin. In Institute of Cancer Research (ICR) mice, α-defensin termed cryptdin (Crp) in Paneth cells consists of six major isoforms, Crp1 to 6. Despite accumulating evidences that α-defensin functions in controlling the intestinal microbiota, topographical localization of Paneth cells in the small intestine in relation to functions of α-defensin remains to be determined. In this study, we examined the expression level of messenger RNA (mRNA) encoding six Crp-isoforms and Crp immunoreactivities using singly isolated crypts together with bactericidal activities of Paneth cell secretions from isolated crypts of duodenum, jejunum, and ileum. Here we showed that levels of Crp mRNAs in the single crypt ranged from 5 x 103 to 1 x 106 copies per 5 ng RNA. For each Crp isoform, the expression level in ileum was 4 to 50 times higher than that in duodenum and jejunum. Furthermore, immunohistochemical analysis of isolated crypts revealed that the average number of Paneth cell per crypt in the small intestine increased from proximal to distal, three to seven-fold, respectively. Both Crp1 and 4 expressed greater in ileal Paneth cells than those in duodenum or jejunum. Bactericidal activities in secretions of ileal Paneth cell exposed to bacteria were significantly higher than those of duodenum or jejunum. In germ-free mice, Crp expression in each site of the small intestine was attenuated and bactericidal activities released by ileal Paneth cells were decreased compared to those in conventional mice. Taken together, Paneth cells and their α-defensin in adult mouse appeared to be regulated topographically in innate immunity to control intestinal integrity.


Subject(s)
Anti-Infective Agents/metabolism , Intestine, Small/pathology , Paneth Cells/metabolism , Protein Precursors/metabolism , RNA, Messenger/genetics , alpha-Defensins/metabolism , Animals , Cells, Cultured , Gene Expression Regulation , Immunity, Innate , Male , Mice , Mice, Inbred ICR , Paneth Cells/pathology , Protein Precursors/genetics , Protein Transport , alpha-Defensins/genetics
5.
Front Med (Lausanne) ; 7: 504, 2020.
Article in English | MEDLINE | ID: mdl-32984381

ABSTRACT

Several studies have measured the effectiveness of masks at retaining particles of various sizes in vitro. To identify a functional in vivo model, herein we used germ-free (GF) mice to test the effectiveness of textiles as filtration material and droplet barriers to complement available in vitro-based knowledge. Herein, we report a study conducted in vivo with bacteria-carrying microdroplets to determine to what extent household textiles prevent contamination of GF mice in their environment. Using a recently validated spray-simulation method (mimicking a sneeze), herein we first determined that combed-cotton textiles used as two-layer-barriers covering the mouse cages prevented the contamination of all GF animals when sprayed 10-20 bacterial-droplet units/cm2. In additional to exposure trials, the model showed that GF mice were again protected by the combed-cotton textile after the acute exposure to 10 times more droplets (20 "spray-sneezes", ~200 bacterial-droplet units/cm2). Overall, two-layer combed-cotton protected 100% of the GF mice from bacteria-carrying droplets (n = 20 exposure-events), which was significantly superior compared to 100% mouse contamination without textile coverage or when 95% partly covered (n = 18, Fisher-exact, p < 0.0001). Of relevance is that two different densities of cotton were equally effective (100%) in preventing contamination regardless of density (120-vs. 200 g/m2; T-test, p = 0.0028), suggesting that similar density materials could prevent droplet contamination. As a practical message, we conducted a speech trial (counting numbers, 1-100) with/without the protection of the same cotton textile used as face cover. The trial illustrated that contamination of surfaces occurs at a rate of >2-6 bacteria-carrying saliva-droplets per word (2.6 droplets/cm2, 30 cm) when speaking at 60-70 decibels and that cotton face covers fully prevent bacterial surface contamination.

6.
Front Immunol ; 10: 2174, 2019.
Article in English | MEDLINE | ID: mdl-31572384

ABSTRACT

The gut microbiota influence host vascular physiology locally in the intestine, but also evoke remote effects that impact distant organ functions. Amongst others, the microbiota affect intestinal vascular remodeling, lymphatic development, cardiac output and vascular function, myelopoiesis, prothrombotic platelet function, and immunovigilance of the host. Experimentally, host-microbiota interactions are investigated by working with animals devoid of symbiotic bacteria, i.e., by the decimation of gut commensals by antibiotic administration, or by taking advantage of germ-free mouse isolator technology. Remarkably, some of the vascular effects that were unraveled following antibiotic treatment were not observed in the germ-free animal models and vice versa. In this review, we will dissect the manifold influences that antibiotics have on the cardiovascular system and their effects on thromboinflammation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cardiovascular System/drug effects , Germ-Free Life , Animals , Blood Coagulation , Blood Platelets , Mice , Myeloid Cells
7.
Expert Rev Hematol ; 12(7): 541-549, 2019 07.
Article in English | MEDLINE | ID: mdl-31159610

ABSTRACT

Introduction: There is emerging evidence linking the commensal gut microbiota with the development of cardiovascular disease and arterial thrombosis. In immunothrombosis, the host clotting system protects against the dissemination of invading microbes, not considering the huge number of microbes that interact with host physiology in a mutualistic fashion. Areas covered: Interestingly, recent research revealed that colonizing gut microbes profoundly influence host innate immune pathways that support arterial thrombus growth. The gut microbiota promotes arterial thrombus formation by enhancing the pro-adhesive capacity of the vascular endothelium, triggering hepatic von Willebrand factor synthesis and its release by Weibel-Palade body exocytosis, resulting in elevated von Willebrand factor levels and enhancing FVIII stability in plasma. Furthermore, the metabolic capacity of gut resident microbes promotes agonist-induced platelet activation and deposition. Here, we give an overview, with a focus on the vascular endothelium, on how this gut-resident microbial ecosystem contributes to arterial thrombus formation. Expert opinion: The gut microbiota and its metabolites not only act on agonist-induced platelet reactivity, but also influence the hepatic endothelial phenotype via remote signaling, facilitating arterial thrombus growth at the arterial injury site.


Subject(s)
Arteries/metabolism , Disease Susceptibility , Endothelium, Vascular/metabolism , Environment , Gastrointestinal Microbiome , Thrombosis/etiology , Thrombosis/metabolism , Animals , Arteries/immunology , Arteries/pathology , Biomarkers , Cell Adhesion , Disease Susceptibility/immunology , Endothelial Cells/metabolism , Endothelium, Vascular/immunology , Gastrointestinal Microbiome/immunology , Humans , Immunologic Surveillance , Thrombosis/pathology
8.
Biochem Biophys Res Commun ; 498(4): 824-829, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29530528

ABSTRACT

In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain.


Subject(s)
Bacterial Physiological Phenomena , Lateral Ventricles/growth & development , Lateral Ventricles/microbiology , Neurogenesis , Olfactory Bulb/growth & development , Olfactory Bulb/microbiology , Symbiosis , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Physiological Phenomena/drug effects , Interneurons/cytology , Interneurons/microbiology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/microbiology
9.
Front Immunol ; 7: 601, 2016.
Article in English | MEDLINE | ID: mdl-28018362

ABSTRACT

Probiotics, such as lactic acid bacteria (LAB) and Bacillus subtilis var. natto, have been shown to modulate immune responses. It is important to understand how probiotic bacteria impact intestinal epithelial cells (IECs), because IECs are the first line of defense at the mucosal surface barrier and their activities substantially affect the gut microenvironment and immunity. However, to date, their precise mechanism remains unknown due to a lack of analytical systems available for live animal models. Recently, we generated a conditional Ca2+ biosensor Yellow Cameleon (YC3.60) transgenic mouse line and established 5D (x, y, z, time, and Ca2+) intravital imaging systems of lymphoid tissues including those in Peyer's patches and bone marrow. In the present study, we further advance our intravital imaging system for intestinal tracts to visualize IEC responses against orally administrated food compounds in real time. Using this system, heat-killed B. subtilis natto, a probiotic TTCC012 strain, is shown to directly induce Ca2+ signaling in IECs in mice housed under specific pathogen-free conditions. In contrast, this activation is not observed in the Lactococcus lactis strain C60; however, when we generate germ-free YC3.60 mice and observe the LAB stimulation of IECs in the absence of gut microbiota, C60 is capable of inducing Ca2+ signaling. This is the first study to successfully visualize the direct effect of probiotics on IECs in live animals. These data strongly suggest that probiotic strains stimulate IECs under physiological conditions and that their activity is affected by the microenvironment of the small intestine, such as commensal bacteria.

10.
J Histochem Cytochem ; 64(8): 470-82, 2016 08.
Article in English | MEDLINE | ID: mdl-27370795

ABSTRACT

Toll-like receptors (TLRs) are innate immune receptors expressed in all parts of the alimentary tract. However, analyses comparing expression in different segments and data on germ-free animals are lacking. Alimentary tract cancers show increased TLR expression. According to the field effect concept, carcinogenetic factors induce subtle cancer predisposing alterations in the whole organ. We studied TLR1 to TLR9 expression in all segments of the alimentary tract from cancer patients' tumor-adjacent normal mucosa, healthy organ donors, and conventional and germ-free mice by using immunohistochemistry and quantitative PCR. All TLRs were expressed in all segments of the alimentary tract. Expression was most intensive in the small intestine in humans and conventional mice, but germ-free mice showed less expression in the small intestine. TLR expression levels were similar in cancer patients and organ donors. We provide systematic baseline data on the TLR expression in the alimentary tract. Normal epithelium adjacent to tumor seems to have similar TLR expression compared with healthy tissues suggesting absence of any field effect in TLR expression. Accordingly, specimens from cancer patients' normal tumor-adjacent tissue can be used as control tissues in immunohistochemical TLR studies in gastrointestinal cancer.


Subject(s)
Digestive System/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Neoplasms/metabolism , Toll-Like Receptors/metabolism , Adult , Aged , Aged, 80 and over , Animals , Digestive System/microbiology , Female , Germ-Free Life , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Organ Specificity , Species Specificity
11.
Eur J Neurosci ; 44(9): 2654-2666, 2016 11.
Article in English | MEDLINE | ID: mdl-27256072

ABSTRACT

Increasing evidence implicates the microbiota in the regulation of brain and behaviour. Germ-free mice (GF; microbiota deficient from birth) exhibit altered stress hormone signalling and anxiety-like behaviours as well as deficits in social cognition. Although the mechanisms underlying the ability of the gut microbiota to influence stress responsivity and behaviour remain unknown, many lines of evidence point to the amygdala and hippocampus as likely targets. Thus, the aim of this study was to determine if the volume and dendritic morphology of the amygdala and hippocampus differ in GF versus conventionally colonized (CC) mice. Volumetric estimates revealed significant amygdalar and hippocampal expansion in GF compared to CC mice. We also studied the effect of GF status on the level of single neurons in the basolateral amygdala (BLA) and ventral hippocampus. In the BLA, the aspiny interneurons and pyramidal neurons of GF mice exhibited dendritic hypertrophy. The BLA pyramidal neurons of GF mice had more thin, stubby and mushroom spines. In contrast, the ventral hippocampal pyramidal neurons of GF mice were shorter, less branched and had less stubby and mushroom spines. When compared to controls, dentate granule cells of GF mice were less branched but did not differ in spine density. These findings suggest that the microbiota is required for the normal gross morphology and ultrastructure of the amygdala and hippocampus and that this neural remodelling may contribute to the maladaptive stress responsivity and behavioural profile observed in GF mice.


Subject(s)
Amygdala/cytology , Dendrites/ultrastructure , Hippocampus/cytology , Microbiota , Animals , Mice
12.
Article in English | MEDLINE | ID: mdl-26912607

ABSTRACT

There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.


Subject(s)
Behavior, Animal/physiology , Brain/growth & development , Brain/physiology , Gastrointestinal Microbiome/physiology , Germ-Free Life/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL