Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 6(23): 1901114, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832310

ABSTRACT

Frameshift mutations frequently occur in colorectal cancer (CRC) with microsatellite instability (MSI), but the nature and biological function of many MSI-associated mutations remain elusive. Here, an MSI frameshift mutation is identified in glioma tumor suppressor candidate region gene 1 (GLTSCR1) that produces two C-terminal-truncated proteins. Additionally, GLTSCR1 is verified as a tumor suppressor that inhibits CRC metastasis. Through binding to bromodomains and the phosphorylation-dependent interaction domain of bromodomain protein 4 (BRD4) via the C-terminus, GLTSCR1 blocks oncogenic transcriptional elongation. However, truncated GLTSCR1 translocates into the cytoplasm and loses BRD4 binding domain, which induces the phosphorylation of RNA Pol II at Ser2 and dephosphorylation at Ser5, then increases oncogenic transcriptional elongation. Importantly, GLTSCR1 deficiency decreases sensitivity to bromodomain and extra terminal domain inhibitors. This study highlights the molecular mechanism of the GLTSCR1-BRD4 interaction, which is a potential therapeutic target for CRC.

2.
Oncol Lett ; 16(5): 6749-6755, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30405818

ABSTRACT

Glioma tumor suppressor candidate region gene 1 (GLTSCR1) is associated with the progression of oligodendroglioma. However, there has been little study of GLTSCR1 in prostate cancer. In the present study, the association between the expression of GLTSCR1, and the progression and prognosis of tumors in patients with prostate cancer was assessed. An immunohistochemical analysis was performed using a human tissue microarray for GLTSCR1 at the protein expression level and the immunostaining results were evaluated against clinical variables of patients with prostate cancer. Subsequently, The Cancer Genome Atlas (TCGA) was used to validate the analysis results at the mRNA level and to study the prognostic value of GLTSCR1 in prostate cancer. Immunohistochemistry and TCGA data analysis revealed that GLTSCR1 expression in the prostate cancer tissues was significantly higher than that in the benign prostate tissues (immunoreactivity score, P=0.015; mRNA levels: cancer, 447.7±6.45 vs. benign, 343.5±4.21; P<0.001). Additionally, the increased GLTSCR1 protein expression was associated with certain clinical variables in the prostate cancer tissues, including advanced clinical stage (P<0.001), enhanced tumor invasion (P=0.003), lymph node metastasis (P=0.003) and distant metastasis (P=0.001). TCGA data revealed similar results, demonstrating that the upregulation of GLTSCR1 mRNA expression was associated with the Gleason score (P<0.001), enhanced tumor invasion (P=0.011), lymph node metastasis (P=0.001) and distant metastasis (P=0.002). Furthermore, Kaplan-Meier analysis suggested that among all patients, high GLTSCR1 expression indicated a decreased overall survival (P=0.028) and biochemical recurrence (BCR)-free survival (P=0.004), compared with patients with low GLTSCR1 expression. Finally, multivariate analysis revealed that the expression of GLTSCR1 was an independent predictor of poor BCR-free survival (P=0.049). The present study suggested that the increased expression of GLTSCR1 was associated with the progression of prostate cancer. Furthermore, GLTSCR1 may be a novel biomarker that is able to predict the clinical outcome in prostate cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL