Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Psychol ; 15: 1323291, 2024.
Article in English | MEDLINE | ID: mdl-38328382

ABSTRACT

Background: Sensitivity to global motion perception (GMP) decreases gradually with age, and the mechanism to effectively alleviate its aging process is still unclear. This study aimed to examine the impact and mechanism of exercise on GMP aging. Methods: This study adopted the global motion direction discrimination task and used motion coherence thresholds to assess GMP sensitivity. It adopted the perceptual template model (PTM) to fit the GMP processing efficiency. Results: The threshold for the elderly group with no exercise was higher than that of the elderly group with exercise, while the threshold of the latter was higher than that of the youth group. The results of the model fitting showed that both models, Aa and Af, corresponding to the elderly group with exercise and the elderly group with no exercise, respectively, were the best-fitted models when compared with that of the youth group. Compared to the elderly group with no exercise, models Aa and Af, were the best-fitted models. Conclusion: These results showed that good exercise habits might have a certain degree of positive effect on GMP aging, by lower their internal additive noise (Aa), and improve the ability to eliminate external noise (Af).

2.
Sensors (Basel) ; 23(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765806

ABSTRACT

Global motion greatly increases the number of false alarms for object detection in video sequences against dynamic backgrounds. Therefore, before detecting the target in the dynamic background, it is necessary to estimate and compensate the global motion to eliminate the influence of the global motion. In this paper, we use the SURF (speeded up robust features) algorithm combined with the MSAC (M-Estimate Sample Consensus) algorithm to process the video. The global motion of a video sequence is estimated according to the feature point matching pairs of adjacent frames of the video sequence and the global motion parameters of the video sequence under the dynamic background. On this basis, we propose an inverse transformation model of affine transformation, which acts on each adjacent frame of the video sequence in turn. The model compensates the global motion, and outputs a video sequence after global motion compensation from a specific view for object detection. Experimental results show that the algorithm proposed in this paper can accurately perform motion compensation on video sequences containing complex global motion, and the compensated video sequences achieve higher peak signal-to-noise ratio and better visual effects.

3.
Front Aging Neurosci ; 15: 1045263, 2023.
Article in English | MEDLINE | ID: mdl-36967826

ABSTRACT

Previous studies have mainly explored the effects of structural and functional aging of cortical regions on global motion sensitivity in older adults, but none have explored the structural white matter (WM) substrates underlying the age-related decrease in global motion perception (GMP). In this study, random dot kinematogram and diffusion tensor imaging were used to investigate the effects of age-related reductions in WM fiber integrity and connectivity across various regions on GMP. We recruited 106 younger adults and 94 older adults and utilized both tract-based spatial statistics analysis and graph theoretical analysis to comprehensively investigate group differences in WM microstructural and network connections between older and younger adults at the microscopic and macroscopic levels. Moreover, partial correlation analysis was used to explore the relationship between alterations in WM and the age-related decrease in GMP. The results showed that decreased GMP in older adults was related to decreased fractional anisotropy (FA) of the inferior frontal-occipital fasciculus, inferior longitudinal fasciculus, anterior thalamic radiation, superior longitudinal fasciculus, and cingulum cingulate gyrus. Decreased global efficiency of the WM structural network and increased characteristic path length were closely associated with decreased global motion sensitivity. These results suggest that the reduced GMP in older adults may stem from reduced WM integrity in specific regions of WM fiber tracts as well as decreased efficiency of information integration and communication between distant cortical regions, supporting the "disconnection hypothesis" of cognitive aging.

4.
Neuropsychologia ; 183: 108507, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36773806

ABSTRACT

A decrease in global motion perception (GMP) has been reported in older adults, and this age-related decline in GMP varies with the speed of global motion. However, no studies have investigated whether the asynchronous age-related decline in GMP is related to degenerative changes in brain structure. In this study, the random dot kinematogram paradigm and structural magnetic resonance imaging were used to investigate the asynchronous aging of GMP at fast and slow speeds (called fast GMP and slow GMP, respectively) and their relationships with brain structure. Ninety-four older adults (65.74 ± 4.50 yrs) and 90 younger adults (22.83 ± 4.84 yrs) participated in the experiment. The results showed that older adults had higher motion coherence thresholds (MCT) than younger adults at both fast and slow speeds. Brain-behavior correlation analyses of younger adults revealed that none of the correlations between morphological measures and MCTs survived correction for multiple comparisons. For older adults, slow MCT was correlated with cortical thickness in the bilateral V4v, V5/MT+, left V7, V8, LO, and surface area in the right V7. Fast MCT was significantly correlated with gray matter volume in the right V7 and thickness in the left V5/MT+. These results support the view that global motion extraction occurs within two speed-tuned systems that are at least partially independent in terms of their neural substrates, which deteriorate with age at different speeds. Aging of GMP is also associated with morphological changes in the visual cortex. Age-related cerebral atrophy in the dorsal stream may impair both fast and slow GMP, whereas aging of the ventral stream specifically impairs slow GMP.


Subject(s)
Motion Perception , Visual Cortex , Humans , Aged , Aging , Eye Movements , Magnetic Resonance Imaging , Photic Stimulation/methods
5.
Neuropsychologia ; 166: 108140, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34990696

ABSTRACT

Developmental dyscalculia (DD) is a specific learning disability affecting the development of numerical and arithmetical skills. The origin of DD is typically attributed to the suboptimal functioning of key regions within the dorsal visual stream (parietal cortex) which support numerical cognition. While DD individuals are often impaired in visual numerosity perception, the extent to which they also show a wider range of visual dysfunctions is poorly documented. In the current study we measured sensitivity to global motion (translational and flow), 2D static form (Glass patterns) and 3D structure from motion in adults with DD and control subjects. While sensitivity to global motion was comparable across groups, thresholds for static form and structure from motion were higher in the DD compared to the control group, irrespective of associated reading impairments. Glass pattern sensitivity predicted numerical abilities, and this relation could not be explained by recently reported differences in visual crowding. Since global form sensitivity has often been considered an index of ventral stream function, our findings could indicate a cortical dysfunction extending beyond the dorsal visual stream. Alternatively, they would fit with a role of parietal cortex in form perception under challenging conditions requiring multiple element integration.


Subject(s)
Dyscalculia , Form Perception , Motion Perception , Adult , Dyscalculia/diagnostic imaging , Humans , Mathematics , Parietal Lobe/diagnostic imaging , Visual Perception
6.
Atten Percept Psychophys ; 84(1): 179-187, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34657999

ABSTRACT

Repeated practice of a perceptual task, termed "perceptual learning," can improve visual performance. Previously, the training thresholds were determined in two ways. One is that the stimulus corresponding to a certain level in individually set psychometric functions was selected as the training threshold. The other is that the certain stimulus was selected as the training threshold without consideration of individual differences. However, little is known about how the two training methods modulate perceptual learning. This study aimed to evaluate the effect of initial performance on patterns of motion perceptual learning under two methods-individually set or group averaged-for setting the training threshold. Thirty-six observers were randomly divided into individual and group thresholds. Psychometric functions, with the percentage correct as a function of coherence, were measured using the coherent motion direction identification task. For the individual threshold, each observer was trained at individualized coherence level, targeting 60% correct for each observer's psychometric function. For the group threshold, each observer was trained at one coherence level, targeting 60% correct in the group-averaged psychometric function. The threshold was reduced after training with the method of constant stimulus in both groups, indicating improvements following perceptual learning. Furthermore, observers with a poorer initial performance exhibited greater learning gains independent of the training method. Importantly, the correlation between the initial performance and learning gains was larger in the individual threshold than in the group threshold, suggesting the influence of the initial performance on the learning amount depends on the training method.


Subject(s)
Motion Perception , Humans , Learning , Motion , Visual Perception
7.
Atten Percept Psychophys ; 84(6): 1845-1857, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34811633

ABSTRACT

The formation of ensemble codes is an efficient means through which the visual system represents vast arrays of information. This has led to the claim that ensemble representations are formed with minimal reliance on attentional resources. However, evidence is mixed regarding the effects of attention on ensemble processing, and researchers do not always make it clear how attention is being manipulated by their paradigm of choice. In this study, we examined the effects of Posner cueing - a well-established method of manipulating spatial attention - on the processing of a global motion stimulus, a naturalistic ensemble that requires the pooling of local motion signals. In Experiment 1, using a centrally presented, predictive attentional cue, we found no effect of spatial attention on global motion performance: Accuracy in invalid trials, where attention was misdirected by the cue, did not differ from accuracy in valid trials, where attention was directed to the location of the motion stimulus. In Experiment 2, we maximized the potential for our paradigm to reveal any attentional effects on global motion processing by using a threshold-based measure of performance; however, despite this change, there was again no evidence of an attentional effect on performance. Together, our results show that the processing of a global motion stimulus is unaffected when spatial attention is misdirected, and speak to the efficiency with which such ensemble stimuli are processed.


Subject(s)
Attention , Cues , Humans , Reaction Time
8.
Neuroimage Clin ; 32: 102821, 2021.
Article in English | MEDLINE | ID: mdl-34628303

ABSTRACT

Cerebral visual impairment (CVI) is associated with a wide range of visual perceptual deficits including global motion processing. However, the underlying neurophysiological basis for these impairments remain poorly understood. We investigated global motion processing abilities in individuals with CVI compared to neurotypical controls using a combined behavioral and multi-modal neuroimaging approach. We found that CVI participants had a significantly higher mean motion coherence threshold (determined using a random dot kinematogram pattern simulating optic flow motion) compared to controls. Using functional magnetic resonance imaging (fMRI), we investigated activation response profiles in functionally defined early (i.e. primary visual cortex; area V1) and higher order (i.e. middle temporal cortex; area hMT+) stages of motion processing. In area V1, responses to increasing motion coherence were similar in both groups. However, in the CVI group, activation in area hMT+ was significantly reduced compared to controls, and consistent with a surround facilitation (rather than suppression) response profile. White matter tract reconstruction obtained from high angular resolution diffusion imaging (HARDI) revealed evidence of increased mean, axial, and radial diffusivities within cortico-cortical (i.e. V1-hMT+), but not thalamo-hMT+ connections. Overall, our results suggest that global motion processing deficits in CVI may be associated with impaired signal integration and segregation mechanisms, as well as white matter integrity at the level of area hMT+.


Subject(s)
Motion Perception , Visual Cortex , Humans , Magnetic Resonance Imaging , Motion , Photic Stimulation , Primary Visual Cortex , Vision Disorders , Visual Cortex/diagnostic imaging , Visual Perception
9.
Front Hum Neurosci ; 15: 733054, 2021.
Article in English | MEDLINE | ID: mdl-34690723

ABSTRACT

Aim: In this study, we examined (1) the presence of abnormally low scores (below 10th percentile) in various visual motion perception aspects in children with brain damage, while controlling for their cognitive developmental delay; (2) whether the risk is increased in comparison with the observation and expectation in a healthy control group and healthy population. Methods: Performance levels of 46 children with indications of brain damage (Mage = 7y4m, SD = 2y4m) on three visual motion perception aspects (global motion, motion speed, motion-defined form) were evaluated. We used developmental age as entry of a preliminary reference table to classify the patient's performance levels. Then we compared the percentages of abnormally low scores with percentages expected in the healthy population using estimated base rates and the observed percentages in the control sample (n = 119). Results: When using developmental age as reference level, the percentage of low scores on at least one of the three tasks was significantly higher than expected in the healthy population [19/46, 41% (95%CI: 28-56%), p = 0.03]. In 15/19 (79% [95%CI: 61-97%] patients only one aspect of motion perception was affected. Four patients performed abnormally low on two out of three tasks, which is also higher than expected (4/46, 8.7%, 95%CI: 2.4-20.8% vs. 2.1%; z = 2.61, p < 0.01). The observed percentages in the patient group were also higher than found in the control group. Interpretation: There is some evidence that children with early brain damage have an increased risk of isolated and combined motion perception problems, independent of their performance IQ.

10.
Vision Res ; 189: 93-103, 2021 12.
Article in English | MEDLINE | ID: mdl-34688109

ABSTRACT

Radial motion is perceived as faster than linear motion when local spatiotemporal properties are matched. This radial speed bias (RSB) is thought to occur because radial motion is partly interpreted as motion-in-depth. Geometry dictates that a fixed amount of radial expansion at increasing eccentricities is consistent with smaller motion in depth, so it is perhaps surprising that the impact of eccentricity on RSB has not been examined. With this issue in mind, across 3 experiments we investigated the RSB as a function of eccentricity. In a 2IFC task, participants judged which of a linear (test - variable speed) or radial (reference - 2 or 4°/s) stimulus appeared to move faster. Linear and radial stimuli comprised 4 Gabor patches arranged left, right, above and below fixation at varying eccentricities (3.5°-14°). For linear stimuli, Gabors all drifted left or right, whereas for radial stimuli Gabors drifted towards or away from the centre. The RSB (difference in perceived speeds between matched linear and radial stimuli) was recovered from fitted psychometric functions. Across all 3 experiments we found that the RSB decreased with eccentricity but this tendency was less marked beyond 7° - i.e. at odds with the geometry, the effect did not continue to decrease as a function of eccentricity. This was true irrespective of whether stimuli were fixed in size (Experiment 1) or varied in size to account for changes in spatial scale across the retina (Experiment 2). It was also true when we removed conflicting stereo cues via monocular viewing (Experiment 3). To further investigate our data, we extended a previous model of speed perception, which suggests perceived motion for such stimuli reflects a balance between two opposing perceptual interpretations, one for motion in depth and the other for object deformation. We propose, in the context of this model, that our data are consistent with placing greater weight on the motion in depth interpretation with increasing eccentricity and this is why the RSB does not continue to reduce in line with purely geometric constraints.


Subject(s)
Motion Perception , Cues , Humans , Motion , Retina
11.
Neuropsychologia ; 161: 107990, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34403655

ABSTRACT

Migraine is a common neurological disorder with strong links to vision. Interictal migraine is thought to be characterised by internal noise in the brain, possibly due to increased variability in neural firing, which can be estimated using equivalent noise tasks. High-frequency transcranial random noise stimulation (hf-tRNS) can be used to modulate levels of internal noise in the brain, and so presents a possible therapy to redress noise levels in the migraine brain. This is a case-control study using a 2-alternative forced choice (2AFC) design. Hf-tRNS and Sham control stimulation were used alongside a global motion direction discrimination task and visually based equivalent noise tasks. The migraine group demonstrated increased baseline internal noise levels compared to the control group. Internal noise levels, and sampling, were reduced using hf-tRNS but not Sham stimulation. However, there were no differences in terms of coherence thresholds, slopes, and lapse rate for global motion discrimination between the two groups. This is the first demonstration of the possibility of decreasing internal noise levels in migraine using hf-tRNS. Future work could explore the possibility of neurostimulation as a therapy for migraine.


Subject(s)
Migraine Disorders , Transcranial Direct Current Stimulation , Brain , Case-Control Studies , Humans , Migraine Disorders/therapy , Visual Perception
12.
Exp Brain Res ; 239(8): 2399-2418, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34105019

ABSTRACT

There is evidence that high-frequency transcranial random noise stimulation (hf-tRNS) is effective in improving behavioural performance in several visual tasks. However, so far there has been limited research into the spatial and temporal characteristics of hf-tRNS-induced facilitatory effects. In the present study, electroencephalogram (EEG) was used to investigate the spatial and temporal dynamics of cortical activity modulated by offline hf-tRNS on performance on a motion direction discrimination task. We used EEG to measure the amplitude of motion-related VEPs over the parieto-occipital cortex, as well as oscillatory power spectral density (PSD) at rest. A time-frequency decomposition analysis was also performed to investigate the shift in event-related spectral perturbation (ERSP) in response to the motion stimuli between the pre- and post-stimulation period. The results showed that the accuracy of the motion direction discrimination task was not modulated by offline hf-tRNS. Although the motion task was able to elicit motion-dependent VEP components (P1, N2, and P2), none of them showed any significant change between pre- and post-stimulation. We also found a time-dependent increase of the PSD in alpha and beta bands regardless of the stimulation protocol. Finally, time-frequency analysis showed a modulation of ERSP power in the hf-tRNS condition for gamma activity when compared to pre-stimulation periods and Sham stimulation. Overall, these results show that offline hf-tRNS may induce moderate aftereffects in brain oscillatory activity.


Subject(s)
Transcranial Direct Current Stimulation , Disease Progression , Electroencephalography , Electrophysiological Phenomena , Humans
13.
Vision Res ; 186: 34-40, 2021 09.
Article in English | MEDLINE | ID: mdl-34030023

ABSTRACT

Global motion and global form are proposed to be processed through functionally differentiated independent channels along dorsal (motion) and ventral (form) pathways. However, more recent studies show significant interactions between these pathways by inducing the perception of motion (implied motion) from presenting the independent frames of static Glass patterns. The mechanisms behind such interaction are not adequately understood with studies showing a larger contribution of either a motion or form processing mechanism. In the current study, we adapted the equivalent noise paradigm to disentangle the effect of internal noise (local processing) and sampling efficiency (global processing) on global motion, global form, and the interaction of both on the perception of implied motion using physically equivalent stimuli. Six visually normal observers discriminated the direction or orientation of random dot kinematograms (RDK), static Glass patterns (Glass), and dynamic Glass patterns (dGlass) whose directions/orientations were determined by the means of normal distributions with a range of direction/orientation variances that served as external noise. Thresholds (τ) showed a consistent pattern across observers and external noise levels, where τGlass > τdGlass > τRDK. Nested model comparisons where the thresholds were related to the external noise, internal noise, and the sampling efficiency revealed that the difference in performance between the tasks was best described by the change in sampling efficiency with invariable internal noise. Our results showed that the higher thresholds for implied motion compared to real motion could be due to inefficient pooling of local dipole orientation cues at global processing stages involving motion mechanisms.


Subject(s)
Form Perception , Motion Perception , Cues , Eye Movements , Motion , Normal Distribution , Photic Stimulation , Sensory Thresholds
14.
Sensors (Basel) ; 21(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916773

ABSTRACT

Obtaining accurate global motion is a crucial step for video stabilization. This paper proposes a robust and simple method to implement global motion estimation. We don't extend the framework of 2D video stabilization but add a "plug and play" module to motion estimation based on feature points. Firstly, simple linear iterative clustering (SLIC) pre-segmentation is used to obtain superpixels of the video frame, clustering is performed according to the superpixel centroid motion vector and cluster center with large value is eliminated. Secondly, in order to obtain accurate global motion estimation, an improved K-means clustering is proposed. We match the feature points of the remaining superpixels between two adjacent frames, establish a feature points' motion vector space, and use improved K-means clustering for clustering. Finally, the richest cluster is being retained, and the global motion is obtained by homography transformation. Our proposed method has been verified on different types of videos and has efficient performance than traditional approaches. The stabilization video has an average improvement of 0.24 in the structural similarity index than the original video and 0.1 higher than the traditional method.

15.
Handb Clin Neurol ; 178: 257-275, 2021.
Article in English | MEDLINE | ID: mdl-33832680

ABSTRACT

As we live in a dynamic world, motion is a fundamental aspect of our visual experience. The advent of computerized stimuli has allowed controlled study of a wide array of motion phenomena, including global integration and segmentation, speed and direction discrimination, motion aftereffects, the optic flow that accompanies self-motion, perception of object form derived from motion cues, and point-light biological motion. Animal studies first revealed the existence of a motion-selective region, the middle temporal (MT) area, also known as V5, located in the lateral occipitotemporal cortex, followed by areas such as V5A (also known as MST, the middle superior temporal area), V6/V6A, the ventral intraparietal area, and others. In humans there are rare cases of bilateral lesions of the V5/V5A complex causing cerebral akinetopsia, a severe impairment of motion perception. Unilateral V5/V5A lesions are more common but cause milder asymptomatic deficits, often limited to the contralateral hemifield, while parietal lesions can impair perception of point-light biological motion or high-level motion tasks that are attentionally demanding. Impairments of motion perception have also been described in optic neuropathy, particularly glaucoma, as well as Alzheimer's disease, Parkinson's disease with dementia, and dementia with Lewy body disease. Prematurity with or without periventricular leukomalacia and developmental syndromes such as Williams' syndrome, autism, and dyslexia have also been associated with impaired motion perception, suggesting a developmental vulnerability of the dorsal pathway.


Subject(s)
Brain Diseases , Motion Perception , Animals , Brain Mapping , Cerebral Cortex , Humans , Photic Stimulation , Visual Perception
16.
J Exp Child Psychol ; 207: 105092, 2021 07.
Article in English | MEDLINE | ID: mdl-33676115

ABSTRACT

Literature on the development of global motion and global form perception demonstrated their asynchronous developmental trajectories. However, former studies have failed to clearly establish the critical period of maturation for these specific abilities. This study aimed to analyze the developmental trajectories of global motion and global form discrimination abilities by controlling for basic visual functions and general cognitive ability and to present the global motion and global form normative scores. A sample of 456 children and adolescents (4-17 years of age) and 76 adults recruited from the Italian and Swedish general population participated in the study. Motion and form perception were evaluated by the motion coherence test and form coherence test, respectively. Raven's matrices were used to assess general cognitive ability, the Lea Hyvärinen chart test was used for full- and low-contrast visual acuity, and the TNO test was used for stereopsis. General cognitive ability and basic visual functions were strongly related to motion and form perception development. Global motion perception had an accelerated maturation compared with global form perception. For motion perception, an analysis of the oblique effect's development showed that it is present at 4 years of age. The standardized scores of global motion and form coherence tests can be used for clinical purposes.


Subject(s)
Form Perception , Motion Perception , Adolescent , Adult , Aged , Child , Depth Perception , Eye Movements , Humans , Vision, Ocular
17.
Ophthalmic Physiol Opt ; 41(2): 447-456, 2021 03.
Article in English | MEDLINE | ID: mdl-33486810

ABSTRACT

PURPOSE: To explore the differential effects of age and eccentricity on the perception of motion at photopic and mesopic light levels. METHODS: Thirty-six visually normal participants (18 younger; mean age 25 years, range: 20-31) and (18 older; mean age 70 years, range: 60-79) underwent two testing sessions, one at photopic and one at mesopic light levels. In each session, motion perception was tested binocularly at two eccentricities (centrally, and peripherally at 15° rightwards and 5° superior to the horizontal) for four motion tasks: minimum contrast of a drifting Gabor to identify motion direction (motion contrast); translational global motion coherence; biological motion embedded in noise and the minimum duration of a high-contrast Gabor to determine the direction of motion, using two Gabor sizes to measure spatial surround suppression of motion. RESULTS: There was a significant main effect of light condition (higher thresholds in mesopic) for motion contrast (p < 0.001), translational global motion (p = 0.001) and biological motion (p < 0.001); a significant main effect of age (higher thresholds in older adults) for motion contrast (p < 0.001) and biological motion (p = 0.04) and a significant main effect of eccentricity (higher thresholds peripherally) for motion contrast (p < 0.001) and biological motion (p < 0.001). Additionally, we found a significant three-way interaction between light levels, age and eccentricity for translational global motion (similar increase in mesopic thresholds centrally for both groups, but a much larger deterioration in older adult's peripheral mesopic thresholds, p = 0.02). Finally, we found a two-way interaction between light condition and eccentricity for translational global motion (higher values in central mesopic relative to peripheral photopic, p = 0.001) and for biological motion (higher values in peripheral mesopic relative to central photopic, p < 0.001). CONCLUSIONS: For the majority of tasks assessed, motion perception was reduced in mesopic relative to photopic conditions, to a similar extent in both age groups. However, because some older adults exhibited elevated thresholds even under photopic conditions, particularly in the periphery, the ability to detect mesopic moving stimuli even at high contrast was markedly impaired in some individuals. Our results imply age-related differences in the detection of peripheral moving stimuli at night that might impact hazard avoidance and night driving ability.


Subject(s)
Aging/physiology , Color Vision/physiology , Contrast Sensitivity/physiology , Mesopic Vision/physiology , Motion Perception/physiology , Aged , Automobile Driving , Female , Humans , Male , Middle Aged , Reference Values
18.
Methods Mol Biol ; 2253: 21-35, 2021.
Article in English | MEDLINE | ID: mdl-33315216

ABSTRACT

Allostery is a fundamental regulatory mechanism in the majority of biological processes of molecular machines. Allostery is well-known as a dynamic-driven process, and thus, the molecular mechanism of allosteric signal transmission needs to be established. Elastic network models (ENMs) provide efficient methods for investigating the intrinsic dynamics and allosteric communication pathways in proteins. In this chapter, two ENM methods including Gaussian network model (GNM) coupled with Markovian stochastic model, as well as the anisotropic network model (ANM), were introduced to identify allosteric effects in hemoglobins. Techniques on model parameters, scripting and calculation, analysis, and visualization are shown step by step.


Subject(s)
Hemoglobins/chemistry , Hemoglobins/metabolism , Proteins/chemistry , Proteins/metabolism , Allosteric Regulation , Allosteric Site , Animals , Anisotropy , Humans , Markov Chains , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Protein Interaction Maps , Stochastic Processes
19.
International Eye Science ; (12): 1326-1332, 2021.
Article in English | WPRIM (Western Pacific) | ID: wpr-882087

ABSTRACT

@#AIM: To investigate if there is a gender difference in detecting global motion in adults aged 20-24 years and children aged 6-15 years, respectively.<p>METHODS:A total of 46 adults aged between 20-24 years, and 227 children aged between 6-15 years who were divided into five age groups(6-7 years, 8-9 years, 10-11 years, 12-13 years, and 14-15 years), participated in this study. Global motion detection was evaluated with a random dot kinematogram test, with the proportion of the dots moving at the same direction(up <i>vs</i> down, or left <i>vs</i> right)varied in each trial. The speed of each dot consisted of 1.0 and 5.0 deg/s, therefore four conditions of dots moving were examined in this study. Subjects were asked to identify the direction of the perceived global motion in a three-down-one-up staircase algorithm. The minimal proportion of signal dots moving at the same direction for global motion to be perceived is defined as the threshold. Each subject was measured five times and the mean value was recorded in each condition. Two-way analysis of variance was used for data analysis to accommodate the interaction between the two factors: age and sex maturation.<p>RESULTS:For signal dots moving vertically with 1.0 deg/s, the influence of gender and age on global motion detection was statistically significant(gender: <i>F</i>=10.533,<i> P</i>=0.001; age: <i>F</i>=8.599, <i>P</i><0.001). The thresholds for adult females and 14-15 years girls were significantly higher than that in adult males(<i>P</i>=0.013)and 14-15 years boys(<i>P</i>=0.030). There was also a similar effect of gender and age for signal dots moving horizontally with 1.0 deg/s(gender: <i>F</i>=12.073, <i>P</i>=0.001; age: <i>F</i>=8.724, <i>P</i><0.001). The thresholds for adult females and 14-15 years girls were significantly higher than that in adult males(<i>P</i>=0.004)and 14-15 years boys(<i>P</i>=0.009). For signal dots moving vertically with 5.0 deg/s, the influence of gender on global motion detection was statistically significant(<i>F</i>=6.826, <i>P</i>=0.010), while there was no difference between adults and children(<i>F</i>=1.085, <i>P</i>=0.369). The threshold for adult females was significantly higher than that in adult males(<i>P</i>=0.002). Finally, for signal dots moving horizontally with 5.0 deg/s, there was a similar effect as dots moving vertically with the same speed(gender: <i>F</i>=7.775, <i>P</i>=0.006; age: <i>F</i>=1.794, <i>P</i>=0.114). The thresholds for adult females and 14-15 years girls were significantly higher than that in adult males(<i>P</i>=0.001)and 14-15 years boys(<i>P</i>=0.017).<p>CONCLUSION: Gender difference in detecting global motion exists only in adults and children older than 14 years.

20.
eNeuro ; 7(5)2020.
Article in English | MEDLINE | ID: mdl-33060179

ABSTRACT

Visual input during the first years of life is vital for the development of numerous visual functions. While normal development of global motion perception seems to require visual input during an early sensitive period, the detection of biological motion (BM) does not seem to do so. A more complex form of BM processing is the identification of human actions. Here, we tested whether identification rather than detection of BM is experience dependent. A group of human participants who had been treated for congenital cataracts (CC; of up to 18 years in duration, CC group) had to identify ten actions performed by human line figures. In addition, they performed a coherent motion (CM) detection task, which required identifying the direction of CM amid the movement of random dots. As controls, developmental cataract (DC) reversal individuals (DC group) who had undergone the same surgical treatment as CC group were included. Moreover, normally sighted controls were tested both with vision blurred to match the visual acuity (VA) of CC individuals [vision matched (VM) group] and with full sight [sighted control (SC) group]. The CC group identified biological actions with an extraordinary high accuracy (on average ∼85% correct) and was indistinguishable from the VM control group. By contrast, CM processing impairments of the CC group persisted even after controlling for VA. These results in the same individuals demonstrate an impressive resilience of BM processing to aberrant early visual experience and at the same time a sensitive period for the development of CM processing.


Subject(s)
Motion Perception , Humans , Motion , Movement , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL