Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Med Chem ; 25(26): 3141-3159, 2018.
Article in English | MEDLINE | ID: mdl-30191777

ABSTRACT

Dementia is characterized by the impairment of cognition and behavior of people over 65 years. Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the world, as approximately 47 million people are affected by this disease and the tendency is that this number will increase to 62% by 2030. Two microscopic features assist in the characterization of the disease, the amyloid plaques and neurofibrillary agglomerates. All these factors are responsible for the slow and gradual deterioration of memory that affect language, personality or cognitive control. For the AD diagnosis, neuropsychological tests are performed in different spheres of cognitive functions but since not all cognitive functions may be affected, cerebrospinal fluid biomarkers are used along with these tests. To date, cholinesterase inhibitors are used as treatment, they are the only drugs that have shown significant improvements in the cognitive functions of AD patients. Despite the proven effectiveness of cholinesterase inhibitors, an AD carrier, even while being treated, is continually subjected to progressive degeneration of the neuronal tissue. For this reason, other biochemical pathways associated with the pathophysiology of AD have been explored as alternatives to the treatment of this condition such as inhibition of ß-secretase and glycogen synthase kinase-3ß. The present study aims to conduct a review of the epidemiology, pathophysiology, symptoms, diagnosis and treatment of Alzheimer's disease, emphasizing the research and development of new therapeutic approaches.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors/pharmacology , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/physiopathology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Humans
2.
Article in English | MEDLINE | ID: mdl-29753049

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive synaptic dysfunction and neuronal lost in specific brain areas including hippocampus, resulting in memory/learning deficits and cognitive impairments. In addition, non-cognitive symptoms are reported in AD patients, such as anxiety, apathy and depressed mood. The current antidepressant drugs present reduced efficacy to improve depressive symptoms in AD patients. Here, we investigated the ability of creatine, a compound with neuroprotective and antidepressant properties, to counteract amyloid ß1-40 peptide-induced depressive-like behavior in mice. Moreover, we addressed the participation of the intracellular signaling pathway mediated by glycogen synthase kinase-3ß (GSK-3ß)/nuclear factor erythroid-2-related factor 2 (Nrf2) in the creatine effects. Aß1-40 administration (400 pmol/mouse, i.c.v.) increased the immobility time in the tail suspension test and decreased the grooming time and increased latency to grooming in the splash test, indicative of depressive-like behavior. These impairments were attenuated by creatine (0.01 and 10 mg/kg, p.o.) and fluoxetine (10 mg/kg, p.o., positive control). No significant alterations on locomotor performance were observed in the open field. Aß1-40 administration did not alter hippocampal phospho-GSK-3ß (Ser9)/total GSK-3ß, total GSK-3ß and heme oxygenase-1 (HO-1) immunocontents. However, Aß1-40-infused mice treated with creatine (0.01 mg/kg) presented increased phosphorylation of GSK-3ß(Ser9) and HO-1 immunocontent in the hippocampus. Fluoxetine per se increased GSK-3ß(Ser9) phosphorylation, but did not alter HO-1 levels. In addition, Aß1-40 administration increased hippocampal glutathione (GSH) levels as well as glutathione reductase (GR) and thioredoxin reductase (TrxR) activities, and these effects were abolished by creatine and fluoxetine. This study provides the first evidence of the antidepressive-like effects of creatine in Aß1-40-treated mice, which were accompanied by hippocampal inhibition of GSK-3ß and modulation of antioxidant defenses. These findings indicate the potential of creatine for the treatment of depression associated with AD.


Subject(s)
Antidepressive Agents/pharmacology , Creatine/pharmacology , Depressive Disorder/drug therapy , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , Amyloid beta-Peptides , Animals , Depressive Disorder/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Fluoxetine/pharmacology , Glutathione/metabolism , Glutathione Reductase/metabolism , Heme Oxygenase-1/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Membrane Proteins/metabolism , Mice , Peptide Fragments , Phosphorylation/drug effects , Signal Transduction/drug effects , Thioredoxin-Disulfide Reductase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL