Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 378
Filter
1.
Article in English | MEDLINE | ID: mdl-39223096

ABSTRACT

Root cap cuticles (RCCs), comprising mainly very-long-chain fatty acids (VLCFAs), promote salt tolerance by preventing ion influx. Glycosylphosphatidylinositol-anchored lipid transfer protein (LTPG)1 and LTPG2 participate in VLCFA deposition in the extracellular region, aiding RCC formation in the lateral roots. In this study, we investigated whether LTPG1 and LTPG2 have similar functions in the primary roots of young Arabidopsis thaliana. Phenotypic analyses, fluorescence microscopy, and RT-qPCR confirmed that NaCl exposure induced LTPG1 and LTPG2 expression and promoted RCC formation in young primary roots. The loss of RCC in the ltpg1 and ltpg2 mutants resulted in increased NaCl sensitivity of root elongation. NaCl also upregulated the expression of several NaCl-responsive genes in ltpg1 and ltpg2. We conclude that RCC formation via LTPG function is pivotal in enhancing salt tolerance in young primary roots.

2.
Glycobiology ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39129667

ABSTRACT

Glycosylphosphatidylinositols (GPIs) are glycolipids found ubiquitously in eukaryotes. They consist of a glycan and an inositol phospholipid, and act as membrane anchors of many cell-surface proteins by covalently linking to their C-termini. GPIs also exist as unlinked, free glycolipids on the cell surface. In human cells, at least 160 proteins with various functions are GPI-anchored proteins (GPI-APs). Because the attachment of GPI is required for the cell-surface expression of GPI-APs, a thorough knowledge of the molecular basis of mammalian GPI-AP biosynthesis is important for understanding the basic biochemistry and biology of GPI-APs and their medical significance. In this paper, I review our previous knowledge of the biosynthesis of mammalian GPI-APs and then examine new findings made since 2020.

3.
Am J Med Genet A ; : e63833, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119839

ABSTRACT

Glycosylphosphatidylinositols (GPIs) are a type of glycolipid responsible for anchoring many important proteins to the cell membrane surface. Defects in the synthesis of GPIs can lead to a group of multisystem disorders known as the inherited GPI deficiencies (IGDs). Homozygosity for the c.-270C > G variant in the promoter of PIGM has been associated with a IGD subtype known as glycosylphosphatidylinositol biosynthesis defect-1 (GPIBD1). The several cases reported in the literature have been described to have a milder neurologic phenotype in comparison to the other IGDs and have been treated with sodium phenylbutyrate with some degree of success. These patients typically present with portal and hepatic vein thrombosis and mostly develop absence seizures. Here we describe a patient homozygous for a nonsynonymous variant in PIGM who deceased at 9 weeks of life and had multiple physical dysmorphisms (rocker bottom feet, midline cleft palate, thickened and lichenified skin), portal vein thrombosis, CNS structural anomalies (progressive multicystic encephalomalacia and ventriculomegaly), and a neurological phenotype of a diffuse encephalopathy. This is the first known case report of a PIGM-related IGD/CDG due to a coding variant.

4.
Acta Biochim Biophys Sin (Shanghai) ; 56(8): 1234-1243, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39081219

ABSTRACT

Glycosylphosphatidylinositol (GPI) is a highly conserved post-translational modification in eukaryotes, which is essential for anchoring various proteins to the cell surface. Dysfunction of GPI biogenesis leads to human diseases, such as inherited GPI deficiency (IGD) caused by germline mutations in GPI-related genes. With accumulating reports on individuals with IGD, there has been increasing interest and studies on disease mechanism, diagnosis, and therapy. This review outlines the biosynthetic pathway of GPI-anchored proteins (GPI-APs) and summarizes clinical IGD cases from a molecular perspective. We also review current diagnostic and therapeutic approaches for IGD. Finally, we discuss future research directions to facilitate the understanding and treatment of GPI-related disorders.


Subject(s)
Glycosylphosphatidylinositols , Humans , Glycosylphosphatidylinositols/deficiency , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/genetics , Germ-Line Mutation , Carbohydrate Metabolism, Inborn Errors/genetics , Carbohydrate Metabolism, Inborn Errors/metabolism , Seizures
5.
J Biol Chem ; 300(8): 107557, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002668

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchor protein modification in Plasmodium species is well known and represents the principal form of glycosylation in these organisms. The structure and biosynthesis of GPI anchors of Plasmodium spp. has been primarily studied in the asexual blood stage of Plasmodium falciparum and is known to contain the typical conserved GPI structure of EtN-P-Man3GlcN-PI. Here, we have investigated the circumsporozoite protein (CSP) for the presence of a GPI anchor. CSP is the major surface protein of Plasmodium sporozoites, the infective stage of the malaria parasite. While it is widely assumed that CSP is a GPI-anchored cell surface protein, compelling biochemical evidence for this supposition is absent. Here, we employed metabolic labeling and mass-spectrometry-based approaches to confirm the presence of a GPI anchor in CSP. Biosynthetic radiolabeling of CSP with [3H]-palmitic acid and [3H]-ethanolamine, with the former being base-labile and therefore ester-linked, provided strong evidence for the presence of a GPI anchor on CSP, but these data alone were not definitive. To provide further evidence, immunoprecipitated CSP was analyzed for the presence of myo-inositol (a characteristic component of GPI anchor) using strong acid hydrolysis and GC-MS for highly sensitive and quantitative detection. The single ion monitoring (SIM) method for GC-MS analysis confirmed the presence of the myo-inositol component in CSP. Taken together, these data provide confidence that the long-assumed presence of a GPI anchor on this important parasite protein is correct.


Subject(s)
Cell Membrane , Glycosylphosphatidylinositols , Plasmodium falciparum , Protozoan Proteins , Sporozoites , Protozoan Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/chemistry , Cell Membrane/metabolism , Sporozoites/metabolism , Plasmodium falciparum/metabolism , Animals , Membrane Proteins/metabolism , Humans
6.
Front Immunol ; 15: 1392940, 2024.
Article in English | MEDLINE | ID: mdl-39015576

ABSTRACT

As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical settings and promoting the efficacy of immune checkpoint blockade therapies. In eukaryotes, numerous cell surface proteins are tethered to the plasma membrane via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating the proper translocation of membrane proteins. However, the available evidence is insufficient to support any additional functional involvement of GPI anchors. Here, we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer (BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be considered as a prognostic risk factor for BC. Patients with high GPI-anchor biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis in exhausted CD8 T cells was higher than normal CD8 T cells, which was not observed between malignant epithelial cells and normal mammary epithelial cells. In addition, we also found that GPI -anchor biosynthesis related genes can be used to diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic model and the prognostic model showed good AUC values. Finally, we confirmed our findings in cells and clinical samples. Knockdown of PIGU gene expression significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines. Immunofluorescence results from clinical samples showed reduced aggregation of CD8 T cells in tissues with high expression of GPAA1 and PIGU.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Glycosylphosphatidylinositols , Machine Learning , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Female , Glycosylphosphatidylinositols/metabolism , Prognosis , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , T-Cell Exhaustion
7.
Mol Genet Genomic Med ; 12(7): e2452, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967264

ABSTRACT

BACKGROUND: Inherited glycosylphosphatidylinositol (GPI) deficiency is an autosomal recessive disease and a set of syndromes caused by different genes involved in the biosynthesis of phosphatidylinositol characterized by severe cognitive disability, elevated serum alkaline phosphatase (ALP) levels, and distinct facial features. This report presents a patient with inherited GPI deficiency caused by a homozygous frameshift variant of PGAP3 due to uniparental isodisomy (UPiD) on chromosome 17. METHOD: Clinical characteristics of the patient were collected. Microarray analysis followed by adaptive sampling sequencing targeting chromosome 17 was used for the identification of variants. Sanger sequencing was used to confirm the variant in the target region. RESULTS: The patient was born at 38 weeks of gestation with a birthweight of 3893 g. He had a distinctive facial appearance with hypertelorism, wide nasal bridge, and cleft soft palate. Postnatal head magnetic resonance imaging revealed a Blake's pouch cyst. The serum ALP level was 940 IU/L at birth and increased to 1781 IU/L at 28 days of age. Microarray analysis revealed region of homozygosity in nearly the entire region of chromosome 17, leading to the diagnosis of UPiD. Adaptive sampling sequencing targeting chromosome 17 confirmed the homozygous variant NM_033419:c.778dupG (p.Val260Glyfs*14) in the PGAP3 gene, resulting in a diagnosis of inherited GPI deficiency. CONCLUSION: This is the first report of inherited GPI deficiency caused by UPiD. Inherited GPI deficiency must be considered in patients with unexplained hyperphosphatasemia.


Subject(s)
Glycosylphosphatidylinositols , Uniparental Disomy , Humans , Male , Carboxylic Ester Hydrolases , Frameshift Mutation , Glycosylphosphatidylinositols/deficiency , Glycosylphosphatidylinositols/genetics , Homozygote , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/pathology , Phosphorus Metabolism Disorders/genetics , Phosphorus Metabolism Disorders/pathology , Receptors, Cell Surface , Seizures , Uniparental Disomy/genetics , Uniparental Disomy/pathology , Infant, Newborn
8.
Subcell Biochem ; 104: 425-458, 2024.
Article in English | MEDLINE | ID: mdl-38963495

ABSTRACT

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.


Subject(s)
Glycosylphosphatidylinositols , Humans , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/chemistry , Animals , Substrate Specificity , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Aminoacyltransferases/genetics , Endoplasmic Reticulum/metabolism , Structure-Activity Relationship , Acyltransferases
9.
Transl Cancer Res ; 13(6): 2691-2703, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988918

ABSTRACT

Background: Glycosylphosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) plays a crucial role in fatty acid metabolism, which is involved in the progression of colorectal cancer (CRC). The aim of this study was to determine the expressional variations of GPIHBP1 in CRC at different stages and to verify whether this protein affects the shaping of the immune microenvironment of cancer cells. Methods: Variations of GPIHBP1 messenger RNA (mRNA) levels were first analysed using The Cancer Genome Atlas (TCGA) database. Protein levels of GPIHBP1 in cancer nest cells, stromal cells or surrounding normal tissues from 68 patients with CRC were checked by immunohistochemistry. Infiltration of immune cells such as macrophages, myeloid-derived suppressor cells (MDSCs), CD8+ and CD56+ cells was parallelly stained in the same tissues. Ectopic GPIHBP1 expressed colonic tumour cells were transplanted into the back of mice. Tumour growth and immune cell infiltrations were also observed. Results: Compared with those in healthy tissues, GPIHBP1 mRNA and protein levels decreased in the patients with CRC at Dukes A-B stage but gradually increased in the patients at Dukes C-D stage. GPIHBP1 in foci or stroma was positively correlated with recruited macrophages or MDSCs and negatively correlated with recruited CD8+, CD56+ or granzyme+ cells. The mice injected with GPIHBP1 overexpression cells bore large tumours. Histological analysis confirmed the infiltration of many macrophages and MDSCs but less CD8+ T or CD56+ cells. Conclusions: The increased expression of GPIHBP1 is involved in the progression of CRC. High GPIHBP1 level of advanced CRC indicates efficient immune evasion in tumour microenvironment.

10.
Cancers (Basel) ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893127

ABSTRACT

Due to the proliferation-induced high demand of cancer cells for folic acid (FA), significant overexpression of folate receptors 1 (FR1) is detected in most cancers. To our knowledge, a detailed characterization of FR1 expression and regulation regarding therapeutic and diagnostic feasibilities in prostate cancer (PCa) has not been described. In the present study, cell cultures, as well as tissue sections, were analyzed using Western blot, qRT-PCR and immunofluorescence. In addition, we utilized FA-functionalized lipoplexes to characterize the potential of FR1-targeted delivery into PCa cells. Interestingly, we detected a high level of FR1-mRNA in healthy prostate epithelial cells and healthy prostate tissue. However, we were able to show that PCa cells in vitro and PCa tissue showed a massively enhanced FR1 membrane localization where the receptor can finally gain its function. We were able to link these changes to the overexpression of GPI-transamidase (GPI-T) by image analysis. PCa cells in vitro and PCa tissue show the strongest overexpression of GPI-T and thereby induce FR1 membrane localization. Finally, we utilized FA-functionalized lipoplexes to selectively transfer pDNA into PCa cells and demonstrate the therapeutic potential of FR1. Thus, FR1 represents a very promising candidate for targeted therapeutic transfer pathways in PCa and in combination with GPI-T, may provide predictive imaging in addition to established diagnostics.

11.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38816207

ABSTRACT

Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.


Candida auris represents one of the most urgent threats to public health. In this study, we reported for the first time the isolation of C. auris from snake thus suggesting the role of these animals as reservoirs of this emerging pathogen.


Subject(s)
Candida , Candidiasis , DNA, Ribosomal Spacer , Disease Reservoirs , Animals , Candida/genetics , Candida/classification , Candida/isolation & purification , Candida/drug effects , Disease Reservoirs/microbiology , Candidiasis/microbiology , Candidiasis/veterinary , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry , Cloaca/microbiology , Sequence Analysis, DNA , DNA, Fungal/genetics , Blood/microbiology , Snakes/microbiology , Elapidae , Egypt , Phylogeny
12.
Mol Genet Metab ; 142(1): 108476, 2024 May.
Article in English | MEDLINE | ID: mdl-38653092

ABSTRACT

We have identified 200 congenital disorders of glycosylation (CDG) caused by 189 different gene defects and have proposed a classification system for CDG based on the mode of action. This classification includes 8 categories: 1. Disorders of monosaccharide synthesis and interconversion, 2. Disorders of nucleotide sugar synthesis and transport, 3. Disorders of N-linked protein glycosylation, 4. Disorders of O-linked protein glycosylation, 5. Disorders of lipid glycosylation, 6. Disorders of vesicular trafficking, 7. Disorders of multiple glycosylation pathways and 8. Disorders of glycoprotein/glycan degradation. Additionally, using information from IEMbase, we have described the clinical involvement of 19 organs and systems, as well as essential laboratory investigations for each type of CDG. Neurological, dysmorphic, skeletal, and ocular manifestations were the most prevalent, occurring in 81%, 56%, 53%, and 46% of CDG, respectively. This was followed by digestive, cardiovascular, dermatological, endocrine, and hematological symptoms (17-34%). Immunological, genitourinary, respiratory, psychiatric, and renal symptoms were less frequently reported (8-12%), with hair and dental abnormalities present in only 4-7% of CDG. The information provided in this study, including our proposed classification system for CDG, may be beneficial for healthcare providers caring for individuals with metabolic conditions associated with CDG.


Subject(s)
Congenital Disorders of Glycosylation , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/classification , Congenital Disorders of Glycosylation/pathology , Glycosylation
13.
Front Mol Biosci ; 11: 1347397, 2024.
Article in English | MEDLINE | ID: mdl-38516184

ABSTRACT

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer phospholipid layer of eukaryotic plasma membranes exclusively by a glycolipid. GPI-APs are not only released into extracellular compartments by lipolytic cleavage. In addition, certain GPI-APs with the glycosylphosphatidylinositol anchor including their fatty acids remaining coupled to the carboxy-terminus of their protein components are also detectable in body fluids, in response to certain stimuli, such as oxidative stress, radicals or high-fat diet. As a consequence, the fatty acid moieties of GPI-APs must be shielded from access of the aqueous environment by incorporation into membranes of extracellular vesicles or into micelle-like complexes together with (lyso)phospholipids and cholesterol. The GPI-APs released from somatic cells and tissues are transferred via those complexes or EVs to somatic as well as pluripotent stem cells with metabolic consequences, such as upregulation of glycogen and lipid synthesis. From these and additional findings, the following hypotheses are developed: i) Transfer of GPI-APs via EVs or micelle-like complexes leads to the induction of new phenotypes in the daughter cells or zygotes, which are presumably not restricted to metabolism. ii) The membrane topographies transferred by the concerted action of GPI-APs and interacting components are replicated by self-organization and self-templation and remain accessible to structural changes by environmental factors. iii) Transfer from mother cells and gametes to their daughter cells and zygotes, respectively, is not restricted to DNA and genes, but also encompasses non-genetic matter, such as GPI-APs and specific membrane constituents. iv) The intergenerational transfer of membrane matter between mammalian organisms is understood as an epigenetic mechanism for phenotypic plasticity, which does not rely on modifications of DNA and histones, but is regarded as molecular mechanism for the inheritance of acquired traits, such as complex metabolic diseases. v) The missing interest in research of non-genetic matter of inheritance, which may be interpreted in the sense of Darwin's "Gemmules" or Galton's "Stirps", should be addressed in future investigations of the philosophy of science and sociology of media.

14.
J Biochem ; 176(1): 23-34, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38382634

ABSTRACT

Cancer antigen 125 (CA125) is a serum marker associated with ovarian cancer. Despite its widespread use, CA125 levels can also be elevated in benign conditions. Recent reports suggest that detecting serum CA125 that carries the Tn antigen, a truncated O-glycan containing only N-acetylgalactosamine on serine or threonine residues, can improve the specificity of ovarian cancer diagnosis. In this study, we engineered cells to express CA125 with a Tn antigen. To achieve this, we knocked out C1GALT1 and SLC35A1, genes encoding Core1 synthase and a transporter for cytidine-5'-monophospho-sialic acid respectively, in human embryonic kidney 293 (HEK293) cells. In ClGALT1-SLC35A1-knockout (KO) cells, the expression of the Tn antigen showed a significant increase, whereas the expression of the T antigen (galactose-ß1,3-N-acetylgalactosamine on serine or threonine residues) was decreased. Due to the inefficient secretion of soluble CA125, we employed a glycosylphosphatidylinositol (GPI) anchoring system. This allowed for the expression of GPI-anchored CA125 on the cell surface of ClGALT1-SLC35A1-KO cells. Cells expressing high levels of GPI-anchored CA125 were then enriched through cell sorting. By knocking out the PGAP2 gene, the GPI-anchored form of CA125 was converted to a secretory form. Through the engineering of O-glycans and the use of a GPI-anchoring system, we successfully produced CA125 with Tn antigen modification.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , CA-125 Antigen , Galactosyltransferases , Glycosylphosphatidylinositols , Humans , Antigens, Tumor-Associated, Carbohydrate/metabolism , CA-125 Antigen/metabolism , HEK293 Cells , Glycosylphosphatidylinositols/metabolism , Galactosyltransferases/metabolism , Galactosyltransferases/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female
15.
Annu Rev Plant Biol ; 75(1): 345-375, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38424067

ABSTRACT

Initially identified as a key regulator of female fertility in Arabidopsis, the FERONIA (FER) receptor kinase is now recognized as crucial for almost all aspects of plant growth and survival. FER partners with a glycosylphosphatidylinositol-anchored protein of the LLG family to act as coreceptors on the cell surface. The FER-LLG coreceptor interacts with different RAPID ALKALINIZATION FACTOR (RALF) peptide ligands to function in various growth and developmental processes and to respond to challenges from the environment. The RALF-FER-LLG signaling modules interact with molecules in the cell wall, cell membrane, cytoplasm, and nucleus and mediate an interwoven signaling network. Multiple FER-LLG modules, each anchored by FER or a FER-related receptor kinase, have been studied, illustrating the functional diversity and the mechanistic complexity of the FER family signaling modules. The challenges going forward are to distill from this complexity the unifying schemes where possible and attain precision and refinement in the knowledge of critical details upon which future investigations can be built. By focusing on the extensively characterized FER, this review provides foundational information to guide the next phase of research on FER in model as well as crop species and potential applications for improving plant growth and resilience.


Subject(s)
Signal Transduction , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Phosphotransferases/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Protein Kinases/metabolism , Protein Kinases/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Protein Serine-Threonine Kinases
16.
Biomed Rep ; 20(4): 57, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38414627

ABSTRACT

Glycosylphosphatidylinositol-glycan (GPI) is an anchor to specific cell surface proteins known as GPI-anchored proteins (APs) that are localized in lipid rafts and may act as cell co-receptors, enzymes and adhesion molecules. The present review investigated the significance of GPI biosynthesis class phosphatidylinositol-glycan (PIG)M and PIGX in GPI synthesis and their implications in human health conditions. PIGM encodes GPI-mannosyltransferase I (MT-I) enzyme that adds the first mannose to the GPI core structure. PIGX encodes the regulatory subunit of GPI-MT-I. The present review summarizes characteristics of the coding sequences of PIGM and PIGX, and their expression in humans, as well as the relevance of GPI-MT-I and the regulatory subunit in maintaining the presence of GPI-APs on the cell surface and their secretion. In addition, the association of PIGM mutations with paroxysmal nocturnal hemoglobinuria and certain types of GPI-deficiency disease and the altered expression of PIGM and PIGX in cancer were also reviewed. In addition, their interaction with other proteins was described, suggesting a complex role in cell biology. PIGM and PIGX are critical genes for GPI synthesis. Understanding gene and protein regulation may provide valuable insights into the role of GPI-APs in cellular processes.

17.
eNeuro ; 11(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38233143

ABSTRACT

The Drosophila Dpr and DIP proteins belong to the immunoglobulin superfamily of cell surface proteins (CSPs). Their hetero- and homophilic interactions have been implicated in a variety of neuronal functions, including synaptic connectivity, cell survival, and axon fasciculation. However, the signaling pathways underlying these diverse functions are unknown. To gain insight into Dpr-DIP signaling, we sought to examine how these CSPs are associated with the membrane. Specifically, we asked whether Dprs and DIPs are integral membrane proteins or membrane anchored through the addition of glycosylphosphatidylinositol (GPI) linkage. We demonstrate that most Dprs and DIPs are GPI anchored to the membrane of insect cells and validate these findings for some family members in vivo using Drosophila larvae, where GPI anchor cleavage results in loss of surface labeling. Additionally, we show that GPI cleavage abrogates aggregation of insect cells expressing cognate Dpr-DIP partners. To test if the GPI anchor affects Dpr and DIP localization, we replaced it with a transmembrane domain and observed perturbation of subcellular localization on motor neurons and muscles. These data suggest that membrane anchoring of Dprs and DIPs through GPI linkage is required for localization and that Dpr-DIP intracellular signaling likely requires transmembrane coreceptors.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Drosophila , Membrane Proteins/genetics , Membrane Proteins/metabolism , Motor Neurons/metabolism
18.
Curr Opin Chem Biol ; 78: 102421, 2024 02.
Article in English | MEDLINE | ID: mdl-38181647

ABSTRACT

Glycosylphosphatidylinositol (GPI) attachment to the C-terminus of proteins is a prevalent posttranslational modification in eukaryotic species, and GPIs help anchor proteins to the cell surface. GPI-anchored proteins (GPI-APs) play a key role in various biological events. However, GPI-APs are difficult to access and investigate. To tackle the problem, chemical and chemoenzymatic methods have been explored for the preparation of GPI-APs, as well as GPI probes that facilitate the study of GPIs on live cells. Substantial progress has also been made regarding GPI-AP biosynthesis, which is helpful for developing new synthetic methods for GPI-APs. This article reviews the recent advancements in the study of GPI-AP biosynthesis, GPI-AP synthesis, and GPI interaction with the cell membrane utilizing synthetic probes.


Subject(s)
Glycosylphosphatidylinositols , Membrane Proteins , Glycosylphosphatidylinositols/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Protein Processing, Post-Translational
19.
Article in English | MEDLINE | ID: mdl-37497882

ABSTRACT

Climate change is a change in the usual weather found in a place. The climate change has a major impact not only on natural disasters of the Earth but also on human health. The climate crisis is then no longer a future concern. It includes both the global warming driven by human emissions of greenhouse gases (GHG), and the resulting large-scale shifts in weather patterns. Global warming can occur from a variety of causes, both natural and human induced. The primary GHG in Earth's atmosphere, listed in decreasing order of average global mole fraction, are: water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone (O3). Today, scientists around the world continue to try and solve the puzzle of climate change. It is clear that to address climate change, the amount of CO2 released into the atmosphere by industrial process has to be reduced because once it is added to the atmosphere, it can continue to affect climate for thousands of years. For such a purpose, an approach to intervention using expression vectors for any protein targeting to the cell plasma membrane via the glycosylphosphatidylinositol, GPI, anchor is suggested. The resulting GPI-anchored proteins would be useful for studying intermolecular interactions, especially gene-environment interactions, in investigating the potential impact of any chemical compounds on any genes of interest and could be used for carbonic anhydrase (CA)-based CO2-capture (environmental application). This approach would be crucial not only for capturing CO2 via GPI and CA but also for the production of CA enzyme as well as its stabilization and therefore useful for combating the global warming of climate change.


Subject(s)
Carbonic Anhydrases , Climate Change , Humans , Carbon Dioxide/metabolism , Glycosylphosphatidylinositols , Greenhouse Effect , Carbonic Anhydrases/genetics
20.
J Clin Lipidol ; 18(1): e80-e89, 2024.
Article in English | MEDLINE | ID: mdl-37981531

ABSTRACT

BACKGROUND: Severe hypertriglyceridemia can be caused by pathogenic variants in genes encoding proteins involved in the metabolism of triglyceride-rich lipoproteins. A key protein in this respect is lipoprotein lipase (LPL) which hydrolyzes triglycerides in these lipoproteins. Another important protein is glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) which transports LPL to the luminal side of the endothelial cells. OBJECTIVE: Our objective was to identify a genetic cause of hypertriglyceridemia in 459 consecutive unrelated subjects with levels of serum triglycerides ≥20 mmol/l. These patients had been referred for molecular genetic testing from 1998 to 2021. In addition, we wanted to study whether GPIHBP1 autoantibodies also were a cause of hypertriglyceridemia. METHODS: Molecular genetic analyses of the genes encoding LPL, GPIHBP1, apolipoprotein C2, lipase maturation factor 1 and apolipoprotein A5 as well as apolipoprotein E genotyping, were performed in all 459 patients. Serum was obtained from 132 of the patients for measurement of GPIHBP1 autoantibodies approximately nine years after molecular genetic testing was performed. RESULTS: A monogenic cause was found in four of the 459 (0.9%) patients, and nine (2.0%) patients had dyslipoproteinemia due to homozygosity for apolipoprotein E2. One of the 132 (0.8%) patients had GPIHBP1 autoantibody syndrome. CONCLUSION: Only 0.9% of the patients had monogenic hypertriglyceridemia, and only 0.8% had GPIHBP1 autoantibody syndrome. The latter figure is most likely an underestimate because serum samples were obtained approximately nine years after hypertriglyceridemia was first identified. There is a need to implement measurement of GPIHBP1 autoantibodies in clinical medicine to secure that proper therapeutic actions are taken.


Subject(s)
Hypertriglyceridemia , Receptors, Lipoprotein , Humans , Autoantibodies , Endothelial Cells , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins , Hypertriglyceridemia/genetics , Triglycerides/metabolism , Molecular Biology , Apolipoproteins
SELECTION OF CITATIONS
SEARCH DETAIL