Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am Nat ; 202(3): 351-367, 2023 09.
Article in English | MEDLINE | ID: mdl-37606942

ABSTRACT

AbstractIndividual quality and environmental conditions may mask or interact with energetic trade-offs in life history evolution. Deconstructing these sources of variation is especially difficult in long-lived species that are rarely observed on timescales long enough to disentangle these effects. Here, we investigated relative support for variation in female quality and costs of reproduction as factors shaping differences in life history trajectories using a 32-year dataset of repeated reproductive measurements from 273 marked, known-age female gray seals (Halichoerus grypus). We defined individual reproductive investment using two traits, reproductive frequency (a female's probability of breeding) and provisioning performance (offspring weaning mass). Fitted hierarchical Bayesian models identified individual investment relative to conspecifics (over a female's entire life and in three age classes) and subsequently estimated how these investment metrics and the Atlantic Multidecadal Oscillation are associated with longevity. Individual differences (i.e., quality) contributed a large portion of the variance in reproductive traits. Females that consistently invest well in their offspring relative to other females survive longer. The best-supported model estimated survival as a function of age class-specific provisioning performance, where late-life performance was particularly variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. Overall, these results suggest that in gray seals, individual quality is a stronger driver in life history variation than individual strategies resulting from energetic trade-offs.


Subject(s)
Life History Traits , Seals, Earless , Female , Animals , Bayes Theorem , Longevity , Phenotype
2.
Emerg Infect Dis ; 29(4): 786-791, 2023 04.
Article in English | MEDLINE | ID: mdl-36958010

ABSTRACT

We report the spillover of highly pathogenic avian influenza A(H5N1) into marine mammals in the northeastern United States, coincident with H5N1 in sympatric wild birds. Our data indicate monitoring both wild coastal birds and marine mammals will be critical to determine pandemic potential of influenza A viruses.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Seals, Earless , Animals , Influenza in Birds/epidemiology , Birds , Disease Outbreaks , Animals, Wild , New England/epidemiology
3.
J Zoo Wildl Med ; 51(1): 228-231, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32212568

ABSTRACT

Baseline health parameters are limited in the primary literature for gray seals (Halichoerus grypus) in the northwest Atlantic. Accurate normal physiologic reference ranges for both species and specific geographic populations are vital tools for assessing the health of individuals and understanding the health of the entire population. This study developed comprehensive reference intervals for biochemical and hematologic parameters of recently weaned gray seal pups on Cape Cod, Massachusetts from samples collected in 2013, 2016, and 2017. Reference ranges were developed using methodology outlined by the American Society of Clinical Veterinary Pathology. By establishing more comprehensive biochemical and hematologic reference ranges for this population based on a robust sample size, this study provides a new tool for clinicians, researchers, and rehabilitation organizations to improve individual patient care and population research.


Subject(s)
Blood Chemical Analysis/veterinary , Hematologic Tests/veterinary , Seals, Earless/blood , Animals , Animals, Wild/blood , Female , Male , Massachusetts , Reference Values , Weaning
4.
Environ Sci Pollut Res Int ; 26(17): 17418-17426, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31020531

ABSTRACT

This study presents levels of 137Cs and 40K concentrations in the placentas of seals gathered in the period 2007-2015. The mean activity of 137Cs and 40K was 5.49 Bq kg-1w.w. and 136.6 Bq kg-1 ww respectively. Statistically significant correlation was observed between the 137Cs activities in placenta and in herring-the staple food for seals. The concentrations of 137Cs and 40K were also determined in other tissues (muscle, liver, lung, and brain) of wild seals. The concentrations of 137Cs were from 2.59 Bq-1 ww (lungs) to 24.3 Bq kg-1 ww (muscles). The transfer factor values for 137Cs (seal tissue/fish) ranged from 0.89 to 2.42 in the case of the placentas and from 1.35 to 8.17 in the case of the muscle. For adults seal, the effective dose from 137Cs was 2.98 nGy h-1. The mean external radiation dose to pup was 0.77 nGy h-1 from 137Cs and 6.69 nGy h-1 from 40K.


Subject(s)
Cesium Radioisotopes/metabolism , Potassium Radioisotopes/metabolism , Radiation Monitoring , Seals, Earless/metabolism , Water Pollutants, Radioactive/metabolism , Animals , Baltic States , Female , Fishes , Male , Muscles/chemistry , Pregnancy , Water Pollutants, Radioactive/analysis
5.
Bioscience ; 67(8): 760-768, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29599542

ABSTRACT

As the sampling frequency and resolution of Earth observation imagery increase, there are growing opportunities for novel applications in population monitoring. New methods are required to apply established analytical approaches to data collected from new observation platforms (e.g., satellites and unmanned aerial vehicles). Here, we present a method that estimates regional seasonal abundances for an understudied and growing population of gray seals (Halichoerus grypus) in southeastern Massachusetts, using opportunistic observations in Google Earth imagery. Abundance estimates are derived from digital aerial survey counts by adapting established correction-based analyses with telemetry behavioral observation to quantify survey biases. The result is a first regional understanding of gray seal abundance in the northeast US through opportunistic Earth observation imagery and repurposed animal telemetry data. As species observation data from Earth observation imagery become more ubiquitous, such methods provide a robust, adaptable, and cost-effective solution to monitoring animal colonies and understanding species abundances.

6.
Water Air Soil Pollut ; 227: 52, 2016.
Article in English | MEDLINE | ID: mdl-26806985

ABSTRACT

Mercury (Hg), aside from having high toxicity, is characterized by its ability to biomagnify in the marine trophic chain. This is an important problem especially in estuaries, or in the coastal zone, particularly near the mouths of large rivers. This study was conducted in the years 2001-2011, in the coastal zone of the Baltic Sea near to the mouth of the River Vistula, which is the second biggest river discharging into the Baltic. Mercury concentration was measured in the tissues and organs of cod, flounder, herring, seals (living in the wild and in captivity), great black-backed gulls, and African penguins from Gdansk Zoo, and also in human hair. Penguins and seals at the seal sanctuary in Hel were fed only herring. In marine birds and mammals and in the pelagic herring, the highest Hg concentration was observed in the kidney and in the liver, while in cod and flounder (located on a higher trophic level) the muscles were the most contaminated with mercury. In gray seals living in the seal sanctuary, Hg concentration in all analyzed tissues and organs except the kidneys was lower in comparison with seals living in the wild. The comparatively small share of fish in the diet of local Polish people and their preference towards the consumption of herring contributed to low concentration of Hg in their hair. The protective mechanisms related to detoxification and elimination of mercury were shown to be more effective in the seals than in the penguins, despite the former consuming around 10 times more food per day.

SELECTION OF CITATIONS
SEARCH DETAIL