Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(7): e2306825, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064125

ABSTRACT

Chirality and polarity are the two most important and representative symmetry-dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror-related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest-level challenge. Herein, a new symmetry-breaking strategy that employs heteroanionic groups to construct hourglass-like [Sr3 OGeS3 ]2+ and [Sr3 SGeS3 ]2+ groups to design and synthesize a new oxychalcogenide Sr18 Ge9 O5 S31 with chiral-polar duality is proposed. The presence of two enantiomers of Sr18 Ge9 O5 S31 is confirmed by the single-crystal X-ray diffraction. Its optical activity and ferroelectricity are also studied by solid-state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18 Ge9 O5 S31 possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid-infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry-breaking and are able to provide some inspiration for exploring the chiral-polar duality materials.

2.
Small Methods ; 7(3): e2201368, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642805

ABSTRACT

Inspired by the experimental achievement of layered LaCuOX (X = S, Se) with superior thermoelectric (TE) performance, the TE properties of Ag-based isomorphic LaAgOX are systemically investigated by the first-principles calculation. The LaAgOS and LaAgOSe are direct semiconductors with wide bandgaps of ≈2.50 and ≈2.35 eV. Essential four-phonon and multiple carrier scattering mechanisms are considered in phonon and electronic transport calculations to improve the accuracy of the figure-of-merit (ZT). The p-type LaAgOX (X = S, Se) shows excellent TE performance on account of the large Seebeck coefficient originated from the band convergency and low thermal conductivity caused by the strong phonon-phonon scattering. Consequently, the optimal ZTs along the out-of-plane direction decrease in the order of n-type LaAgOSe (≈2.88) > p-type LaAgOSe (≈2.50) > p-type LaAgOS (≈2.42) > n-type LaAgOS (≈2.27) at 700 K, and the optimal ZTs of ≈1.16 and ≈1.29 are achieved for p-type LaAgOS and LaAgOSe at the same temperature. The present work would provide a deep insight into the phonon and electronic transport properties of LaAgOX (X = S, Se), but also could shed light on the way for the rational design of state-of-the-art heteroanionic materials for TE application.

3.
Adv Sci (Weinh) ; 10(4): e2204755, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36470657

ABSTRACT

Oxychalcogenides capable of exhibiting excellent balance among large second-harmonic generation (SHG) response, wide band gap (Eg ), and suitable birefringence (Δn) are ideal materials class for infrared nonlinear optical (IR NLO) crystals. However, rationally designing a new high-performance oxychalcogenide IR NLO crystal still faces a huge challenge because it requires the optimal orientations of the heteroanionic groups in oxychalcogenide. Herein, a series of antiperovskite-type oxychalcogenides, Ae3 Q[GeOQ3 ] (Ae = Ba, Sr; Q = S, Se), which were synthesized by employing the antiperovskite-type Ba3 S[GeS4 ] as the structure template. Their structures feature novel three-dimensinoal frameworks constructed by distorted [QAe6 ] octahedra, which are further filled by [GeOQ3 ] tetrahedra to form antiperovskite-type structures. Based on the unique antiperovskite-type structures, the favorable alignment of the polarizable [GeOQ3 ] tetrahedra and distorted [QAe6 ] octahedra have been achieved. These contribute the ideal combination of large SHG response (0.7-1.5 times that of AgGaS2 ), wide Eg (3.52-4.10 eV), and appropriate Δn (0.017-0.035) in Ae3 Q[GeOQ3 ]. Theoretical calculations and crystal structure analyses revealed that the strong SHG and wide Eg could be attributed to the polarizable [GeOQ3 ] tetrahedra and distorted [QAe6 ] octahedra. This research provides a new exemplification for the design of high-performance IR NLO materials.

4.
Angew Chem Int Ed Engl ; 61(21): e202201616, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35266263

ABSTRACT

Inorganic heteroanionic materials are attracting increasing attention for exploring new nonlinear optical (NLO) materials because they could better satisfy the necessary but conflicting properties of NLO crystals, e.g. large SHG response and wide band-gap. Up to now, the reports on heteroanionic NLO materials have mainly focused on ultraviolet or visible oxide-based fluoroborates, fluorophosphates, borate-phosphates and borate-iodates. However, chalcogenides containing different kinds of anionic groups have barely been reported. Herein, we have synthesized the first oxychalcogenide-carbonate, Sr3 [SnOSe3 ][CO3 ] that contains two different kinds of anionic groups, [SnOSe3 ] and [CO3 ]. It crystallizes in a noncentrosymmetric space group and exhibits fascinating NLO properties, including a large SHG response (≈1×AGS), sufficient birefringence (0.12 @1064 nm), wide band-gap (3.46 eV) and high laser damage threshold (240 MW cm-2 ). These make Sr3 [SnOSe3 ][CO3 ] a promising NLO crystal.

5.
Adv Mater ; 31(19): e1805295, 2019 May.
Article in English | MEDLINE | ID: mdl-30861235

ABSTRACT

The burgeoning field of anion engineering in oxide-based compounds aims to tune physical properties by incorporating additional anions of different size, electronegativity, and charge. For example, oxychalcogenides, oxynitrides, oxypnictides, and oxyhalides may display new or enhanced responses not readily predicted from or even absent in the simpler homoanionic (oxide) compounds because of their proximity to the ionocovalent-bonding boundary provided by contrasting polarizabilities of the anions. In addition, multiple anions allow heteroanionic materials to span a more complex atomic structure design palette and interaction space than the homoanionic oxide-only analogs. Here, established atomic and electronic principles for the rational design of properties in heteroanionic materials are contextualized. Also described are synergistic quantum mechanical methods and laboratory experiments guided by these principles to achieve superior properties. Lastly, open challenges in both the synthesis and the understanding and prediction of the electronic, optical, and magnetic properties afforded by anion-engineering principles in heteroanionic materials are reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL