Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(30): 9117-9128, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037750

ABSTRACT

Two-dimensional (2D) materials have garnered significant attention due to their exceptional properties requisite for next-generation electronics, including ultrahigh carrier mobility, superior mechanical flexibility, and unusual optical characteristics. Despite their great potential, one of the major technical difficulties toward lab-to-fab transition exists in the seamless integration of 2D materials with classic material systems, typically composed of three-dimensional (3D) materials. Owing to the self-passivated nature of 2D surfaces, it is particularly challenging to achieve well-defined interfaces when forming 3D materials on 2D materials (3D-on-2D) heterostructures. Here, we comprehensively review recent progress in 3D-on-2D incorporation strategies, ranging from direct-growth- to layer-transfer-based approaches and from non-epitaxial to epitaxial integration methods. Their technological advances and obstacles are rigorously discussed to explore optimal, yet viable, integration strategies of 3D-on-2D heterostructures. We conclude with an outlook on mixed-dimensional integration processes, identifying key challenges in state-of-the-art technology and suggesting potential opportunities for future innovation.

2.
Small ; : e2311040, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864224

ABSTRACT

Nociceptive pain perception is a remarkable capability of organisms to be aware of environmental changes and avoid injury, which can be accomplished by specialized pain receptors known as nociceptors with 4 vital properties including threshold, no adaptation, relaxation, and sensitization. Bioinspired systems designed using artificial devices are investigated to imitate the efficacy and functionality of nociceptive transmission. Here, an artificial pain-perceptual system (APPS) with a homogeneous material and heterogeneous integration is proposed to emulate the behavior of fast and slow pain in nociceptive transmission. Retention-differentiated poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4-phenylenevinylene] (MDMO-PPV) memristors with film thicknesses of 160 and 80 nm are manufactured and adopted as A-δ and C nerve fibers of nociceptor conduits, respectively. Additionally, a nociceptor mimic, the ruthenium nanoparticles (Ru-NPs)-doped MDMO-PPV piezoresistive pressure sensor, is fabricated with a noxiously stimulated threshold of 150 kPa. Under the application of pricking and dull noxious stimuli, the current flows predominantly through the memristor to mimic the behavior of fast and slow pain, respectively, in nociceptive transmission with postsynaptic potentiation properties, which is analogous to biological pain perception. The proposed APPS can provide potential advancements in establishing the nervous system, thus enabling the successful development of next-generation neurorobotics, neuroprosthetics, and precision medicine.

3.
ACS Appl Mater Interfaces ; 16(27): 35505-35515, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935928

ABSTRACT

The commercialization of 3D heterogeneous integration through hybrid bonding has accelerated, and accordingly, Cu-polymer bonding has gained significant attention as a means of overcoming the limitations of conventional Cu-SiO2 hybrid bonding, offering high compatibility with other fabrication processes. Polymers offer robust bonding strength and a low dielectric constant, enabling high-speed signal transmission with high reliability, but suffer from low thermomechanical stability. Thermomechanical stability of polymers was not achieved previously because of thermal degradation and unstable anchoring. To overcome these limitations, wafer-scale Cu-polymer bonding via N-heterocyclic carbene (NHC) nanolayers was presented for 3D heterogeneous integration, affording ultrastable packing density, crystallinity, and thermal properties. NHC nanolayers were deposited on copper electrodes via electrochemical deposition, and wafer-scale 3D heterogeneous integration was achieved by adhesive bonding at 170 °C for 1 min. Ultrastable conductivity and thermomechanical properties were observed by the spatial mapping of conductivity, work function, and force-distance curves. With regard to the characterization of NHC nanolayers, low-temperature bonding, robust corrosion inhibition, enhanced electrical conductivity, back-end-of-line process compatibility, and fabrication process reduction, NHC Cu/polymer bonding provides versatile advances in 3D heterogeneous integration, indicating that NHC Cu/polymer bonding can be utilized as a platform for future 3D vertical chip architectures.

4.
Adv Mater ; 36(35): e2402419, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38923058

ABSTRACT

Releasing epitaxial perovskite oxide films from their native oxide substrates produces high quality, 2D-material-like monocrystalline freestanding oxide membranes, as potential key components for the next-generation electronic devices. Two major obstacles still limit their practical applications: macroscopic material defects (mainly cracks) that lowers uniformity and yield, and the high cost of the consumed oxide substrates. Here, a two-step film transfer method and a substrate recycling method enable repetitive fabrication of millimeter-scale, fully-connected freestanding oxide films of various chemical compositions from the same substrates; arrays of capacitor and resistor devices based on these oxides transferred on silicon indicate high uniformity, low sample-to-sample variation, and satisfactory electrical connectivity. The two-step transfer suppresses crack formation by avoiding buckling-delamination-type relaxation of epitaxial strain, and the key point to achieve substrate reuse is to remove the residual Al species bonded to the substrate surfaces. The mitigation of such long-lasting issues in freestanding oxide fabrication techniques may eventually pave roads toward future industrial-grade devices, as well as enabling many research opportunities in fundamental physics.

5.
Adv Mater ; 36(30): e2402435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723286

ABSTRACT

III-V semiconductors possess high mobility, high frequency response, and detection sensitivity, making them potentially attractive for beyond-silicon electronics applications. However, the traditional heteroepitaxy of III-V semiconductors is impeded by a significant lattice mismatch and the necessity for extreme vacuum and high temperature conditions, thereby impeding their in situ compatibility with flexible substrates and silicon-based circuits. In this study, a novel approach is presented for fabricating ultrathin InSb single-crystal nanosheets on arbitrary substrates with a thickness as thin as 2.4 nm using low-thermal-budget van der Waals (vdW) epitaxy through chemical vapor deposition (CVD). In particular, in situ growth has been successfully achieved on both silicon-based substrates and flexible polyimide (PI) substrates. Notably, the growth temperature required for InSb nanosheets (240 °C) is significantly lower than that employed in back-end-of-line processes (400 °C). The field effect transistor devices based on fabricated ultrathin InSb nanosheets exhibit ultra-high on-off ratio exceeding 108 and demonstrate minimal gate leakage currents. Furthermore, these ultrathin InSb nanosheets display p-type characteristics with hole mobilities reaching up to 203 cm2 V-1 s-1 at room temperatures. This study paves the way for achieving heterogeneous integration of III-V semiconductors and facilitating their application in flexible electronics.

6.
ACS Nano ; 18(11): 7739-7768, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38456396

ABSTRACT

Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.

7.
Nano Lett ; 24(10): 2939-2952, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477054

ABSTRACT

Advanced heterogeneous integration technologies are pivotal for next-generation electronics. Single-crystalline materials are one of the key building blocks for heterogeneous integration, although it is challenging to produce and integrate these materials. Remote epitaxy is recently introduced as a solution for growing single-crystalline thin films that can be exfoliated from host wafers and then transferred onto foreign platforms. This technology has quickly gained attention, as it can be applied to a wide variety of materials and can realize new functionalities and novel application platforms. Nevertheless, remote epitaxy is a delicate process, and thus, successful execution of remote epitaxy is often challenging. Here, we elucidate the mechanisms of remote epitaxy, summarize recent breakthroughs, and discuss the challenges and solutions in the remote epitaxy of various material systems. We also provide a vision for the future of remote epitaxy for studying fundamental materials science, as well as for functional applications.

8.
Small Methods ; 8(7): e2301232, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38420896

ABSTRACT

Integration of wafer-scale oxide and semiconductor materials meets the difficulties of residual stress and materials incompatibility. In this work, Ag NPs thin film is contributed as an energy confinement layer between oxide (Sapphire) and semiconductor (Si) wafers to localize the materials interaction during ultrafast laser irradiation. Due to the plasmonic effects generated within constructed dielectric-metal-dielectric structures (i.e., Sapphire-Ag-Si), thermal diffusion and chemical reaction between Ag and its neighboring materials facilitate the microwelding of Sapphire and Si wafers. Ag NPs can be totally sintered within the junction area to bridge oxide and semiconductor, while Al─O─Ag bond and Ag─Si bond are formed at Ag-Sapphire and Ag─Si interfaces, respectively. As-received heterogeneous joint exhibits a high shear strength up to 5.4 MPa, with the fracture occurring inside Si wafer. Meanwhile, insertion of metal nanolayer can greatly relieve the residual stress-induced microcracking inside the brittle materials. Such wafer-scale Sapphire and Si interconnects thus show robust strength and excellent impermeability even after thermal shocking (-40 °C to 120 °C) for 200 cycles. This metal NPs layer-assisted plasmonic microwelding technology can extend to broad materials integration, which is promising for high-performance microdevices development in MEMS, MOEMS, or microfluidics.

9.
ACS Nano ; 18(8): 6348-6358, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38314696

ABSTRACT

The advancement in thin-film exfoliation for synthesizing oxide membranes has led to possibilities for creating artificially assembled heterostructures with structurally and chemically incompatible materials. The sacrificial layer method is a promising approach to exfoliate as-grown films from a compatible material system, allowing for their integration with dissimilar materials. Nonetheless, the conventional sacrificial layers often possess an intricate stoichiometry, thereby constraining their practicality and adaptability, particularly when considering techniques such as molecular beam epitaxy (MBE). This is where easy-to-grow binary alkaline-earth-metal oxides with a rock salt crystal structure are useful. These oxides, which include (Mg, Ca, Sr, Ba)O, can be used as a sacrificial layer covering a much broader range of lattice parameters compared to conventional sacrificial layers and are easily dissolvable in deionized water. In this study, we show the epitaxial growth of the single-crystalline perovskite SrTiO3 (STO) on sacrificial layers consisting of crystalline SrO, BaO, and Ba1-xCaxO films, employing a hybrid MBE method. Our results highlight the rapid (≤5 min) dissolution of the sacrificial layer when immersed in deionized water, facilitating the fabrication of millimeter-sized STO membranes. Using high-resolution X-ray diffraction, atomic-force microscopy, scanning transmission electron microscopy, impedance spectroscopy, and scattering-type near-field optical microscopy (SNOM), we demonstrate single-crystalline STO membranes with bulk-like intrinsic dielectric properties. The employment of alkaline earth metal oxides as sacrificial layers is likely to simplify membrane synthesis, particularly with MBE, thus expanding the research and application possibilities.

10.
Front Immunol ; 14: 1267755, 2023.
Article in English | MEDLINE | ID: mdl-38094296

ABSTRACT

N4-acetylcytidine (ac4C) is a modification of cytidine at the nitrogen-4 position, playing a significant role in the translation process of mRNA. However, the precise mechanism and details of how ac4C modifies translated mRNA remain unclear. Since identifying ac4C sites using conventional experimental methods is both labor-intensive and time-consuming, there is an urgent need for a method that can promptly recognize ac4C sites. In this paper, we propose a comprehensive ensemble learning model, the Stacking-based heterogeneous integrated ac4C model, engineered explicitly to identify ac4C sites. This innovative model integrates three distinct feature extraction methodologies: Kmer, electron-ion interaction pseudo-potential values (PseEIIP), and pseudo-K-tuple nucleotide composition (PseKNC). The model also incorporates the robust Cluster Centroids algorithm to enhance its performance in dealing with imbalanced data and alleviate underfitting issues. Our independent testing experiments indicate that our proposed model improves the Mcc by 15.61% and the ROC by 5.97% compared to existing models. To test our model's adaptability, we also utilized a balanced dataset assembled by the authors of iRNA-ac4C. Our model showed an increase in Sn of 4.1%, an increase in Acc of nearly 1%, and ROC improvement of 0.35% on this balanced dataset. The code for our model is freely accessible at https://github.com/louliliang/ST-ac4C.git, allowing users to quickly build their model without dealing with complicated mathematical equations.


Subject(s)
Cytidine , Nucleotides , RNA, Messenger/genetics , Cytidine/genetics , Algorithms
11.
Polymers (Basel) ; 15(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37835944

ABSTRACT

The ever-increasing demand for faster computing has led us to an era of heterogeneous integration, where interposers and package substrates have become essential components for further performance scaling. High-bandwidth connections are needed for faster communication between logic and memory dies. There are several limitations to current generation technologies, and dielectric buildup layers are a key part of addressing those issues. Although there are several polymer dielectrics available commercially, there are numerous challenges associated with incorporating them into interposers or package substrates. This article reviewed the properties of polymer dielectric materials currently available, their properties, and the challenges associated with their fabrication, electrical performance, mechanical reliability, and electrical reliability. The current state-of-the-art is discussed, and guidelines are provided for polymer dielectrics for the next-generation interposers.

12.
Sensors (Basel) ; 23(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37688114

ABSTRACT

Optical sensing offers several advantages owing to its non-invasiveness and high sensitivity. The miniaturization of optical sensors will mitigate spatial and weight constraints, expanding their applications and extending the principal advantages of optical sensing to different fields, such as healthcare, Internet of Things, artificial intelligence, and other aspects of society. In this study, we present the development of a miniature optical sensor for monitoring thrombi in extracorporeal membrane oxygenation (ECMO). The sensor, based on a complementary metal-oxide semiconductor integrated circuit (CMOS-IC), also serves as a photodiode, amplifier, and light-emitting diode (LED)-mounting substrate. It is sized 3.8 × 4.8 × 0.75 mm3 and provides reflectance spectroscopy at three wavelengths. Based on semiconductor and microelectromechanical system (MEMS) processes, the design of the sensor achieves ultra-compact millimeter size, customizability, prototyping, and scalability for mass production, facilitating the development of miniature optical sensors for a variety of applications.

13.
Nano Converg ; 10(1): 40, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37648837

ABSTRACT

Remote epitaxy has opened novel opportunities for advanced manufacturing and heterogeneous integration of two-dimensional (2D) materials and conventional (3D) materials. The lattice transparency as the fundamental principle of remote epitaxy has been studied and challenged by recent observations defying the concept. Understanding remote epitaxy requires an integrated approach of theoretical modeling and experimental validation at multi-scales because the phenomenon includes remote interactions of atoms across an atomically thin material and a few van der Waals gaps. The roles of atomically thin 2D material for the nucleation and growth of a 3D material have not been integrated into a framework of remote epitaxy research. Here, we summarize studies of remote epitaxy mechanisms with a comparison to other epitaxy techniques. In the end, we suggest the crucial topics of remote epitaxy research for basic science and applications.

14.
Adv Sci (Weinh) ; 10(27): e2303429, 2023 09.
Article in English | MEDLINE | ID: mdl-37518771

ABSTRACT

Myocardial infarction (MI) is one of the leading causes of death and disability. Recently developed cardiac patches provide mechanical support and additional conductive paths to promote electrical signal propagation in the MI area to synchronize cardiac excitation and contraction. Cardiac patches based on conductive polymers offer attractive features; however, the modest levels of elasticity and high impedance interfaces limit their mechanical and electrical performance. These structures also operate as permanent implants, even in cases where their utility is limited to the healing period of tissue damaged by the MI. The work presented here introduces a highly conductive cardiac patch that combines bioresorbable metals and polymers together in a hybrid material structure configured in a thin serpentine geometry that yields elastic mechanical properties. Finite element analysis guides optimized choices of layouts in these systems. Regular and synchronous contraction of human induced pluripotent stem cell-derived cardiomyocytes on the cardiac patch and ex vivo studies offer insights into the essential properties and the bio-interface. These results provide additional options in the design of cardiac patches to treat MI and other cardiac disorders.


Subject(s)
Induced Pluripotent Stem Cells , Myocardial Infarction , Humans , Absorbable Implants , Myocytes, Cardiac , Polymers/chemistry , Technology
15.
Nanophotonics ; 12(8): 1633-1641, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37383029

ABSTRACT

Metasurfaces offer a versatile platform for engineering the wavefront of light using nanostructures with subwavelength dimensions and hold great promise for dramatically miniaturizing conventional optical elements due to their small footprint and broad functionality. However, metasurfaces so far have been mainly demonstrated on bulky and planar substrates that are often orders of magnitude thicker than the metasurface itself. Conventional substrates not only nullify the reduced footprint advantage of metasurfaces, but also limit their application scenarios. The bulk substrate also determines the metasurface dielectric environment, with potentially undesired optical effects that undermine the optical performance. Here we develop a universal polymer-assisted transfer technique to tackle this challenge by decoupling the substrate employed on the fabrication of metasurfaces from that used for the target application. As an example, Huygens' metasurfaces with 120 nm thickness in the visible range (532 nm) are demonstrated to be transferred onto a 100 nm thick freestanding SiNx membrane while maintaining excellent structural integrity and optical performance of diffraction-limited focusing. This transfer method not only enables the thinnest dielectric metalens to the best of our knowledge, but also opens up new opportunities in integrating cascaded and multilayer metasurfaces, as well as the heterogeneous integration with nonconventional substrates and various electronic/photonic devices.

16.
ACS Nano ; 17(11): 9748-9762, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37171107

ABSTRACT

As the Si-based transistors scale down to atomic dimensions, the basic principle of current electronics, which heavily relies on the tunable charge degree of freedom, faces increasing challenges to meet the future requirements of speed, switching energy, heat dissipation, and packing density as well as functionalities. Heterogeneous integration, where dissimilar layers of materials and functionalities are unrestrictedly stacked at an atomic scale, is appealing for next-generation electronics, such as multifunctional, neuromorphic, spintronic, and ultralow-power devices, because it unlocks technologically useful interfaces of distinct functionalities. Recently, the combination of functional perovskite oxides and two-dimensional layered materials (2DLMs) led to unexpected functionalities and enhanced device performance. In this paper, we review the recent progress of the heterogeneous integration of perovskite oxides and 2DLMs from the perspectives of fabrication and interfacial properties, electronic applications, and challenges as well as outlooks. In particular, we focus on three types of attractive applications, namely field-effect transistors, memory, and neuromorphic electronics. The van der Waals integration approach is extendible to other oxides and 2DLMs, leading to almost unlimited combinations of oxides and 2DLMs and contributing to future high-performance electronic and spintronic devices.

17.
Nano Converg ; 10(1): 19, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37115353

ABSTRACT

Remote epitaxy, which was discovered and reported in 2017, has seen a surge of interest in recent years. Although the technology seemed to be difficult to reproduce by other labs at first, remote epitaxy has come a long way and many groups are able to consistently reproduce the results with a wide range of material systems including III-V, III-N, wide band-gap semiconductors, complex-oxides, and even elementary semiconductors such as Ge. As with any nascent technology, there are critical parameters which must be carefully studied and understood to allow wide-spread adoption of the new technology. For remote epitaxy, the critical parameters are the (1) quality of two-dimensional (2D) materials, (2) transfer or growth of 2D materials on the substrate, (3) epitaxial growth method and condition. In this review, we will give an in-depth overview of the different types of 2D materials used for remote epitaxy reported thus far, and the importance of the growth and transfer method used for the 2D materials. Then, we will introduce the various growth methods for remote epitaxy and highlight the important points in growth condition for each growth method that enables successful epitaxial growth on 2D-coated single-crystalline substrates. We hope this review will give a focused overview of the 2D-material and substrate interaction at the sample preparation stage for remote epitaxy and during growth, which have not been covered in any other review to date.

18.
Nano Converg ; 10(1): 20, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37120780

ABSTRACT

Epitaxy technology produces high-quality material building blocks that underpin various fields of applications. However, fundamental limitations exist for conventional epitaxy, such as the lattice matching constraints that have greatly narrowed down the choices of available epitaxial material combinations. Recent emerging epitaxy techniques such as remote and van der Waals epitaxy have shown exciting perspectives to overcome these limitations and provide freestanding nanomembranes for massive novel applications. Here, we review the mechanism and fundamentals for van der Waals and remote epitaxy to produce freestanding nanomembranes. Key benefits that are exclusive to these two growth strategies are comprehensively summarized. A number of original applications have also been discussed, highlighting the advantages of these freestanding films-based designs. Finally, we discuss the current limitations with possible solutions and potential future directions towards nanomembranes-based advanced heterogeneous integration.

19.
Adv Sci (Weinh) ; 10(9): e2205481, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658711

ABSTRACT

In this work, the authors demonstrate a novel vertically-stacked thin film transistor (TFT) architecture for heterogeneously complementary inverter applications, composed of p-channel polycrystalline silicon (poly-Si) and n-channel amorphous indium tungsten oxide (a-IWO), with a low footprint than planar structure. The a-IWO TFT with channel thickness of approximately 3-4 atomic layers exhibits high mobility of 24 cm2 V-1 s-1 , near ideally subthreshold swing of 63 mV dec-1 , low leakage current below 10-13 A, high on/off current ratio of larger than 109 , extremely small hysteresis of 0 mV, low contact resistance of 0.44 kΩ-µm, and high stability after encapsulating a passivation layer. The electrical characteristics of n-channel a-IWO TFT are well-matched with p-channel poly-Si TFT for superior complementary metal-oxide-semiconductor technology applications. The inverter can exhibit a high voltage gain of 152 V V-1 at low supply voltage of 1.5 V. The noise margin can be up to 80% of supply voltage and perform the symmetrical window. The pico-watt static power consumption inverter is achieved by the wide energy bandgap of a-IWO channel and atomically-thin channel. The vertically-stacked complementary field-effect transistors (CFET) with high energy-efficiency can increase the circuit density in a chip to conform the development of next-generation semiconductor technology.

20.
Micromachines (Basel) ; 13(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35888889

ABSTRACT

Flip-chip microbump (µ-bump) bonding technology between indium phosphide (InP) and silicon carbide (SiC) substrates for a millimeter-wave (mmW) wireless communication application is demonstrated. The proposed process of flip-chip µ-bump bonding to achieve high-yield performance utilizes a SiO2-based dielectric passivation process, a sputtering-based pad metallization process, an electroplating (EP) bump process enabling a flat-top µ-bump shape, a dicing process without the peeling of the dielectric layer, and a SnAg-to-Au solder bonding process. By using the bonding process, 10 mm long InP-to-SiC coplanar waveguide (CPW) lines with 10 daisy chains interconnected with a hundred µ-bumps are fabricated. All twelve InP-to-SiC CPW lines placed on two samples, one of which has an area of approximately 11 × 10 mm2, show uniform performance with insertion loss deviation within ±10% along with an average insertion loss of 0.25 dB/mm, while achieving return losses of more than 15 dB at a frequency of 30 GHz, which are comparable to insertion loss values of previously reported conventional CPW lines. In addition, an InP-to-SiC resonant tunneling diode device is fabricated for the first time and its DC and RF characteristics are investigated.

SELECTION OF CITATIONS
SEARCH DETAIL