Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-39106012

ABSTRACT

In this study, we synthesized MOF/COF hybrid material (NH2-MOF-5/MCOF) by integrating NH2-MOF-5 (Zn) with a melamine-based COF (MCOF) to target the photocatalytic degradation of methylene blue (MB) dye. Characterization using SEM, XRD, XPS, FT-IR, and UV-DRS confirmed the synthesized MOF/COF hybrid's exceptional photocatalytic performance under visible light. The addition of H2O2 significantly enhanced the photocatalytic degradation, achieving removal rates of 90%, 92%, and 57% for 11.75 mg L-1, 30 mg L-1, and 83 mg L-1 of MB, respectively. Kinetic studies revealed first-order kinetics, with a rate constant nearly 3.5 times higher with added H2O2. We proposed a comprehensive photocatalytic mechanism elucidated through energy band structure analysis and scavenger tests. Our findings revealed the formation of a heterojunction between NH2-MOF-5 and MCOF, which mitigates electron-hole recombination, with ∙OH identified as the principal species governing methylene blue degradation. Moreover, the NH2-MOF-5/MCOF hybrid displayed excellent reusability and chemical stability over six cycles. Notably, this H2O2-assisted hybrid material demonstrated the removal of 99% of ibuprofen, a pharmaceutical drug, showcasing its broad applicability in removing organic contaminants in aqueous solutions, thereby holding great promise for wastewater treatment.

2.
J Environ Manage ; 367: 121970, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39106792

ABSTRACT

Photocatalysis has been proven to be an excellent technology for treating antibiotic wastewater, but the impact of each active species involved in the process on antibiotic degradation is still unclear. Therefore, the S-scheme heterojunction photocatalyst Ti3C2/g-C3N4/TiO2 was successfully synthesized using melamine and Ti3C2 as precursors by a one-step calcination method using mechanical stirring and ultrasound assistance. Its formation mechanism was studied in detail through multiple characterizations and work function calculations. The heterojunction photocatalyst not only enabled it to retain active species with strong oxidation and reduction abilities, but also significantly promoted the separation and transfer of photo-generated carriers, exhibiting an excellent degradation efficiency of 94.19 % for tetracycline (TC) within 120 min. Importantly, the priority attack sites, degradation pathways, degradation intermediates and their ecological toxicity of TC under the action of each single active species (·O2-, h+, ·OH) were first positively explored and evaluated through design experiments, Fukui function theory calculations, HPLC-MS, Escherichia coli toxicity experiments, and ECOSAR program. The results indicated that the preferred attack sites of ·O2- on TC were O20, C7, C11, O21, and N25 atoms with high f+ value. The toxicity of intermediates produced by ·O2- was also lower than those produced by h+ and ·OH.


Subject(s)
Tetracycline , Tetracycline/chemistry , Tetracycline/toxicity , Catalysis , Titanium/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Wastewater/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity
3.
Chemosphere ; 364: 143021, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111676

ABSTRACT

Molybdenum disulfide (MoS2) is heralded as an exemplary two-dimensional (2D) functional material, largely attributed to its distinctive layered structure. Upon forming heterojunctions with reducing species, MoS2 displays remarkable photocatalytic properties. In this research, we fabricated a novel heterojunction photocatalyst, FeS/MoS2-0.05, through the integration of FeS with hollow MoS2. This composite aims at the efficient photocatalytic reduction of hexavalent chromium (Cr(VI)). A comprehensive array of characterization techniques unveiled that MoS2 flakes, dispersed on FeS, provide numerous active sites for photocatalysis at the heterojunction interface. The inclusion of FeS seemingly promotes the formation of sulfur vacancies on MoS2. Consequently, this heterojunction catalyst exhibits photocatalytic activity surpassing pristine MoS2 by a factor of 3.77. The augmented activity of the FeS/MoS2-0.05 catalyst is attributed chiefly to an internal electric field at the interface. This field enhances the facilitation of charge transfer and separation significantly. Density functional theory (DFT) calculations, coupled with experimental analyses, corroborate this observation. Additionally, DFT calculations indicate that sulfur vacancies act as pivotal sites for Cr(VI) adsorption. Significantly, the adsorption energy of Cr(VI) species shows enhanced favorability under acidic conditions. Our results suggest that the FeS/MoS2-0.05 heterojunction photocatalyst presents substantial potential for the remediation of Cr(VI)-contaminated wastewater.

4.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999979

ABSTRACT

This study presents a pioneering synthesis of a direct Z-scheme Y2TmSbO7/GdYBiNbO7 heterojunction photocatalyst (YGHP) using an ultrasound-assisted hydrothermal synthesis technique. Additionally, novel photocatalytic nanomaterials, namely Y2TmSbO7 and GdYBiNbO7, were fabricated via the hydrothermal fabrication technique. A comprehensive range of characterization techniques, including X-ray diffractometry, Fourier-transform infrared spectroscopy, Raman spectroscopy, UV-visible spectrophotometry, X-ray photoelectron spectroscopy, transmission electron microscopy, X-ray energy-dispersive spectroscopy, fluorescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance, was employed to thoroughly investigate the morphological features, composition, chemical, optical, and photoelectric properties of the fabricated samples. The photocatalytic performance of YGHP was assessed in the degradation of the pesticide acetochlor (AC) and the mineralization of total organic carbon (TOC) under visible light exposure, demonstrating eximious removal efficiencies. Specifically, AC and TOC exhibited removal rates of 99.75% and 97.90%, respectively. Comparative analysis revealed that YGHP showcased significantly higher removal efficiencies for AC compared to the Y2TmSbO7, GdYBiNbO7, or N-doped TiO2 photocatalyst, with removal rates being 1.12 times, 1.21 times, or 3.07 times higher, respectively. Similarly, YGHP demonstrated substantially higher removal efficiencies for TOC than the aforementioned photocatalysts, with removal rates 1.15 times, 1.28 times, or 3.51 times higher, respectively. These improvements could be attributed to the Z-scheme charge transfer configuration, which preserved the preferable redox capacities of Y2TmSbO7 and GdYBiNbO7. Furthermore, the stability and durability of YGHP were confirmed, affirming its potential for practical applications. Trapping experiments and electron spin resonance analyses identified active species generated by YGHP, namely •OH, •O2-, and h+, allowing for comprehensive analysis of the degradation mechanisms and pathways of AC. Overall, this investigation advances the development of efficient Z-scheme heterostructural materials and provides valuable insights into formulating sustainable remediation strategies for combatting AC contamination.


Subject(s)
Light , Toluidines , Catalysis , Toluidines/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Photochemical Processes , Photoelectron Spectroscopy , Gadolinium/chemistry
5.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732166

ABSTRACT

This current study assessed the impacts of morphology adjustment of perovskite BiFeO3 (BFO) on the construction and photocatalytic activity of P-infused g-C3N4/U-BiFeO3 (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-C3N4 to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB). Ellipsoids and flakes morphological structures were obtained for U-BFO and BFO, and their effects on the successful fabrication of the heterojunctions were also established. The U-BFO/PCN composite exhibits 99.2% efficiency within 20 min of visible-light irradiation, surpassing BFO/PCN (88.5%), PCN (66.8%), and U-BFO (26.1%). The pseudo-first-order kinetics of U-BFO/PCN composites is 2.41 × 10-1 min-1, equivalent to 2.2 times, 57 times, and 4.3 times of BFO/PCN (1.08 × 10-1 min-1), U-BFO, (4.20 × 10-3 min-1), and PCN, (5.60 × 10-2 min-1), respectively. The recyclability test demonstrates an outstanding photostability for U-BFO/PCN after four cyclic runs. This improved photocatalytic activity exhibited by the composites can be attributed to enhanced visible-light utilization and additional accessible active sites due to surface and electronic band modification of CN via P-doping and effective charge separation achieved via successful composites formation.


Subject(s)
Bismuth , Photolysis , Rhodamines , Catalysis , Bismuth/chemistry , Rhodamines/chemistry , Light , Ferric Compounds/chemistry , Nitrogen Compounds/chemistry , Titanium/chemistry , Photochemical Processes , Nitriles/chemistry , Kinetics , Graphite , Oxides , Calcium Compounds
6.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674003

ABSTRACT

A novel photocatalytic nanomaterial, Ho2YSbO7, was successfully synthesized for the first time using the solvothermal synthesis technique. In addition, a Ho2YSbO7/Bi2MoO6 heterojunction photocatalyst (HBHP) was prepared via the hydrothermal fabrication technique. Extensive characterizations of the synthesized samples were conducted using various instruments, such as an X-ray diffractometer, a Fourier transform infrared spectrometer, a Raman spectrometer, a UV-visible spectrophotometer, an X-ray photoelectron spectrometer, and a transmission electron microscope, as well as X-ray energy dispersive spectroscopy, photoluminescence spectroscopy, a photocurrent test, electrochemical impedance spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. The photocatalytic activity of the HBHP was evaluated for the degradation of diuron (DRN) and the mineralization of total organic carbon (TOC) under visible light exposure for 152 min. Remarkable removal efficiencies were achieved, with 99.78% for DRN and 97.19% for TOC. Comparative analysis demonstrated that the HBHP exhibited markedly higher removal efficiencies for DRN compared to Ho2YSbO7, Bi2MoO6, or N-doped TiO2 photocatalyst, with removal efficiencies 1.13 times, 1.21 times, or 2.95 times higher, respectively. Similarly, the HBHP demonstrated significantly higher removal efficiencies for TOC compared to Ho2YSbO7, Bi2MoO6, or N-doped TiO2 photocatalyst, with removal efficiencies 1.17 times, 1.25 times, or 3.39 times higher, respectively. Furthermore, the HBHP demonstrated excellent stability and reusability. The mechanisms which could enhance the photocatalytic activity remarkably and the involvement of the major active species were comprehensively discussed, with superoxide radicals identified as the primary active species, followed by hydroxyl radicals and holes. The results of this study contribute to the advancement of efficient heterostructural materials and offer valuable insights into the development of sustainable remediation strategies for addressing DRN contamination.


Subject(s)
Bismuth , Diuron , Light , Molybdenum , Photolysis , Bismuth/chemistry , Catalysis , Molybdenum/chemistry , Diuron/chemistry , Water Pollutants, Chemical/chemistry
7.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067453

ABSTRACT

An unprecedented photocatalyst, Sm2EuSbO7, was successfully fabricated in this paper, through a high-temperature solid-state calcination method, which represented its first ever synthesis. Additionally, using the solvothermal method, the Sm2EuSbO7/ZnBiSbO5 heterojunction photocatalyst (SZHP) was fabricated, marking its debut in this study. XRD analysis confirmed that both Sm2EuSbO7 and ZnBiSbO5 exhibited pyrochlore-type crystal structures with a cubic lattice, belonging to the Fd3m space group. The crystal cell parameter was determined to be 10.5682 Å or 10.2943 Å for Sm2EuSbO7 or ZnBiSbO5, respectively. The band gap width measured for Sm2EuSbO7 or ZnBiSbO5 was 2.73 eV or 2.61 eV, respectively. Under visible light irradiation for 150 min (VLTI-150 min), SZHP exhibited remarkable photocatalytic activity, achieving 100% removal of parathion methyl (PM) concentration and 99.45% removal of total organic carbon (TOC) concentration. The kinetic constant (k) for PM degradation and visible light illumination treatment was determined to be 0.0206 min-1, with a similar constant k of 0.0202 min-1 observed for TOC degradation. Remarkably, SZHP exhibited superior PM removal rates compared with Sm2EuSbO7, ZnBiSbO5, or N-doped TiO2 photocatalyst, accompanied by removal rates 1.09 times, 1.20 times, or 2.38 times higher, respectively. Furthermore, the study investigated the oxidizing capability of free radicals through the use of trapping agents. The results showed that hydroxyl radicals had the strongest oxidative capability, followed by superoxide anions and holes. These findings provide a solid scientific foundation for future research and development of efficient heterojunction compound catalysts.

8.
Article in English | MEDLINE | ID: mdl-38032100

ABSTRACT

S-scheme heterojunction photocatalyst MAPbI3@PCN-222 with light absorption extending to the NIR region is constructed by embedding organic-inorganic hybrid perovskite (MAPbI3) into porphyrinic Zr-MOF (PCN-222). Both in situ X-ray photoelectron spectroscopy, ultraviolet photoelectron spectral characterization, and photocatalytic polymerization experiment prove the formation of S-scheme heterojunction. MAPbI3@PCN-222 with a low dosage (90 ppm) displays an impressive photocatalytic ability for 980 nm light-mediated photoinduced electron/energy-transfer-reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization in air. The well-defined controllable-molecular weight polymers including block copolymers and ultrahigh-molecular weight polymers can be achieved with narrow distributions (Mw/Mn < 1.20) via rapid photopolymerization. The industrial application potential of the photocatalyst also has been proved by scale-up synthesis of polymers with low polydispersity under NIR light-induced photopolymerization in a large-volume reaction system (200 mL) with high monomer conversion up to 99%. The penetration photopolymerization through the 5 mm polytetrafluoroethylene plate and excellent photocontrollable behavior illustrate the existence of long-term photogenerated electron transfer of heterojunction and abundant free radicals in photopolymerization. The photocatalyst still retains high catalytic activity after 10 cycles of photopolymerization in air. It is revealed for the first time that the special PET-RAFT polymerization pathway is initiated by the aldehyde-bearing α-aminoalkyl radical derived from the oxidization of triethanolamine (TEOA) by the heterojunction photocatalyst. This research offers a new insight into understanding the NIR-light-activated PET-RAFT polymerization mechanism in the presence of TEOA.

9.
ACS Appl Mater Interfaces ; 15(41): 48096-48109, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37805992

ABSTRACT

Ammonia borane (AB) holds great promise for chemical hydrogen storage, but its slow dehydrogenation kinetics under ambient conditions requires a suitable catalyst to facilitate hydrogen production from AB. Here, we fabricated binary red phosphorus/graphitic carbon nitride (RP/g-CN) heterojunctions decorated with Pt nanoparticles (NPs, denoted Pt/RP/g-CN) with a facile ultrasound-assisted two-step protocol as a photo-assisted catalyst for the hydrolysis of AB (HAB). The heterojunction established through intimate P-O-N bonds was proven to have improved photophysical properties such as a lower electron-hole recombination and enhanced visible light utilization compared to the pristine components. With the incorporation of Pt NPs, the optical properties of RP/g-CN heterojunctions were further improved through Schottky junction formation between semiconductors and Pt NPs, enabling a superb hydrogen gas (H2) generation rate of 142 mol H2·mol Pt-1·min-1 under visible light irradiation. Even though g-CN is a well-known host material for many metal NPs, here we discovered that the interaction of Pt NPs with RP in the ternary heterojunction structure is more favorable than that of g-CN, stressing the key role of RP as a support material in the designed ternary heterostructure. The band alignment of the ternary heterojunction catalyst along with the flow of charge carriers was also studied and shown to be a type-II heterojunction structure without hole migration, namely, a complex type-II heterojunction. Several scavenger experiments were also conducted to explain the mechanism of the photo-assisted HAB. To the best of our knowledge, this is the first example of a dual mechanism proposed for the visible light-assisted HAB. While the majority of the H2 was believed to be produced on the Pt NPs surface with the traditional B-N bond dissociation mechanism, the strong oxidizing action of OH• radicals formed by the heterojunction photocatalyst was also speculated to account for the 33% increase in the activity upon visible light irradiation through another mechanism.

10.
Gels ; 9(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37367142

ABSTRACT

Synthetic organic pigments from the direct discharge of textile effluents are considered as colossal global concern and attract the attention of scholars. The efficient construction of heterojunction systems involving precious metal co-catalysis is an effective strategy for obtaining highly efficient photocatalytic materials. Herein, we report the construction of a Pt-doped BiFeO3/O-g-C3N4 (Pt@BFO/O-CN) S-scheme heterojunction system for photocatalytic degradation of aqueous rhodamine B (RhB) under visible-light irradiation. The photocatalytic performances of Pt@BFO/O-CN and BFO/O-CN composites and pristine BiFeO3 and O-g-C3N4 were compared, and the photocatalytic process of the Pt@BFO/O-CN system was optimized. The results exhibit that the S-scheme Pt@BFO/O-CN heterojunction has superior photocatalytic performance compared to its fellow catalysts, which is due to the asymmetric nature of the as-constructed heterojunction. The as-constructed Pt@BFO/O-CN heterojunction reveals high performance in photocatalytic degradation of RhB with a degradation efficiency of 100% achieved after 50 min of visible-light irradiation. The photodegradation fitted well with pseudo-first-order kinetics proceeding with a rate constant of 4.63 × 10-2 min-1. The radical trapping test reveals that h+ and •O2- take the leading role in the reaction, while the stability test reveals a 98% efficiency after the fourth cycle. As established from various interpretations, the considerably enhanced photocatalytic performance of the heterojunction system can be attributed to the promoted charge carrier separation and transfer of photoexcited carriers, as well as the strong photo-redox ability established. Hence, the S-scheme Pt@BFO/O-CN heterojunction is a good candidate in the treatment of industrial wastewater for the mineralization of organic micropollutants, which pose a grievous threat to the environment.

11.
Environ Pollut ; 329: 121645, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37088256

ABSTRACT

Selective constructing of heterojunctions enables directional electron-hole migration and favorable charge separation. In this study, a novel p-n junction Bi3.64Mo0.36O6.55 (BMO) nanoparticles anchored in BiOI construct by hydrothermal and subsequent in-situ synthesis. The construction of tight heterojunctions that enhance the characteristic absorption of visible light by Bi3.64Mo0.36O6.55/BiOI (BIMO) and expose more reactive sites can be used to facilitate the rapid degradation of antibiotics (Tetracycline, TC), endocrine disruptors (Bisphenol A, BPA) and dyes in water. In addition, the BIMO catalyst maintained the rapid degradation rate of TC despite the interference of inorganic anions and aqueous substrates. The charge transfer pathways and radical species between the heterojunction components were investigated. In addition, the intermediates and toxicological analysis showed that TC was further mineralized and the small molecule products were generated significantly less toxic and less contaminated. In conclusion, this study synthesized photocatalysts based on p-n heterojunctions, which have potential applications for the degradation of TC.


Subject(s)
Nanoparticles , Water Purification , Anti-Bacterial Agents , Coloring Agents , Electrons , Water
12.
ChemSusChem ; 16(11): e202202184, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-36814358

ABSTRACT

Construction of Z-scheme photocatalyst is an effective approach for using solar energy to produce hydrogen during water splitting. Herein, 2D/2D WO3 /g-C3 N4 heterojunction photocatalyst was synthesized by a convenient and green method including exfoliation and heterojunction procedures, in the reverse microemulsion system via supercritical carbon dioxide (scCO2 ). The resultant W/CN-10.3 composite exhibited enhanced photocatalytic activities towards the hydrogen evolution during water splitting with a hydrogen evolution rate of 688.51 µmol g-1 h-1 , which was more than 16 times higher than bulk g-C3 N4 with the same loading amount of Pt as cocatalyst. Due to its effective separation of photogenerated carriers and prolonged lifetime, more photoexcited electrons with high reduction ability could contribute to the production of H2 . Possible formation mechanism of 2D-2D WO3 /g-C3 N4 nanosheets via scCO2 in the reverse microemulsion system by the one-pot method has been proposed. This work provides an efficient and green strategy to synthesize 2D-2D heterojunction for the utilization in solar-to-fuel conversion.


Subject(s)
Carbon Dioxide , Solar Energy , Electrons , Hydrogen , Water
13.
Nanomaterials (Basel) ; 12(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234617

ABSTRACT

This study developed and examined the application of bismuth sulfide doped on graphitic carbon nitride (Bi2S3@g-C3N4) in the degradation of NO under solar irradiation. Bi2S3@g-C3N4 was prepared through the calcination method. The morphological structure and chemical properties of the synthesized photocatalyst were analyzed before the degradation tests. After doping with Bi2S3@g-C3N4, the bandgap was reduced to 2.76 eV, which increased the absorption of solar light. As a result, the Bi2S3@g-C3N4 achieved higher NO degradation (55%) compared to pure Bi2S3 (35%) and g-C3N4 (45%). The trapping test revealed that the electrons were the primary species responsible for most of the NO degradation. The photocatalyst was stable under repeated solar irradiation, maintaining degradation efficiencies of 50% after five consecutive recycling tests. The present work offers strong evidence that Bi2S3@g-C3N4 is a stable and efficient catalyst for the photocatalytic oxidation of NO over solar irradiation.

14.
Materials (Basel) ; 15(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36233988

ABSTRACT

In2YSbO7 and In2YSbO7/BiSnSbO6 heterojunction photocatalyst were prepared by a solvothermal method for the first time. The structural characteristics of In2YSbO7 had been represented. The outcomes showed that In2YSbO7 crystallized well and possessed pyrochlore constitution, a stable cubic crystal system and space group Fd3m. The lattice parameter of In2YSbO7 was discovered to be a = 11.102698 Å and the band gap energy of In2YSbO7 was discovered to be 2.68 eV, separately. After visible-light irradiation of 120 minutes (VLGI-120M), the removal rate (ROR) of indigo carmine (IC) reached 99.42% with In2YSbO7/BiSnSbO6 heterojunction (IBH) as a photocatalyst. The ROR of total organic carbon (TOC) reached 93.10% with IBH as a photocatalyst after VLGI-120M. Additionally, the dynamics constant k which was taken from the dynamic curve toward (DCT) IC density and VLGI time with IBH as a catalyst reached 0.02950 min-1. The dynamics constant k which came from the DCT TOC density and VLGI time with IBH as a photocatalyst reached 0.01783 min-1. The photocatalytic degradation of IC in dye wastewater (DW) with IBH as a photocatalyst under VLGI was in accordance with the first-order kinetic curves. IBH was used to degrade IC in DW for three cycles of experiments under VLGI, and the ROR of IC reached 98.74%, 96.89% and 94.88%, respectively, after VLGI-120M, indicating that IBH had high stability. Compared with superoxide anions or holes, hydroxyl radicals possessed the largest oxidative ability for removing IC in DW, as demonstrated by experiments with the addition of trapping agents. Lastly, the probable degradation mechanism and degradation pathway of IC were revealed in detail. The results showed that a visible-light-responsive heterojunction photocatalyst which possessed high catalytic activity and a photocatalytic reaction system which could effectively remove IC in DW were obtained. This work provided a fresh scientific research idea for improving the performance of a single catalyst.

15.
Materials (Basel) ; 15(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36079288

ABSTRACT

A new photocatalyst, Er2FeSbO7, was prepared by solid phase sintering using the high-temperature synthesis method for the first time in this paper. Er2FeSbO7/BiTiSbO6 heterojunction (EBH) catalyst was prepared by the solvent thermal method for the first time. Er2FeSbO7 compound crystallized in the pyrochlore-type architecture and cubelike crystal system; the interspace group of Er2FeSbO7 was Fd3m and the crystal cellular parameter a of Er2FeSbO7 was 10.179902 Å. The band gap (BDG) width of Er2FeSbO7 was 1.88 eV. After visible light irradiation of 150 minutes (VLGI-150min) with EBH as a photocatalyst, the removal rate (RR) of enrofloxacin (ENR) concentration was 99.16%, and the total organic carbon (TOC) concentration RR was 94.96%. The power mechanics invariable k toward ENR consistency and visible light irradiation (VLGI) time with EBH as a photocatalyzer attained 0.02296 min−1. The power mechanics invariable k which was involved with TOC attained 0.01535 min−1. The experimental results showed that the photocatalytic degradation (PCD) of ENR within pharmaceutical waste water with EBH as a photocatalyzer under VLGI was in keeping with the single-order reactivity power mechanics. The RR of ENR with EBH as a photocatalyzer was 1.151 times, 1.269 times or 2.524 times that with Er2FeSbO7 as a photocatalyst, BiTiSbO6 as a photocatalyst, or N-doping TiO2 (N-TO) as a photocatalyst after VLGI-150min. The photocatalytic activity, which ranged from high to low among above four photocatalysts, was as follows: EBHP > Er2FeSbO7 > BiTiSbO6 > N-TO. After VLGI-150min toward three periods of the project with EBH as a photocatalyst, the RR of ENR attained 98.00%, 96.76% and 95.60%. The results showed that the stability of EBH was very high. With appending trapping agent, it could be proved that the oxidative capability for degrading ENR, which ranged from strong to weak among three oxidic radicals, was as follows: superoxide anion > hydroxyl radicals (HRS) > holes. This work provides a scientific basis for the research and oriented leader development of efficient heterojunction catalysts.

16.
J Colloid Interface Sci ; 621: 295-310, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35462172

ABSTRACT

The CuBi2O4/Bi4O5I2 S-scheme heterojunction structure was constructed by a hydrothermal and subsequent calcination route. The combination of CuBi2O4 and Bi4O5I2 produced excellent photocatalytic performance under an LED light. A series of technical characterizations, including X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), were used to determine the successful construction of S-scheme CuBi2O4/Bi4O5I2 composites. The improvement of photogenerated carrier separation efficiency helped to achieve the best photocatalytic performance of 37% CuBi2O4/Bi4O5I2, which can degrade tetracycline (TC) to 81.67% in 90 min, and completely inactivate Escherichia coli (E. coli) in 20 min and Staphylococcus aureus (S. aureus) in 40 min. The effects of some key parameters (such as the concentration of pollutants, the amount of catalyst, pH value of a solution, various inorganic anions and various water substrates) and the possible degradation path of tetracycline were systematically studied. Finally, the removal of pollutants and inactivation of bacterial mechanisms based on the S-scheme heterojunction (CuBi2O4/Bi4O5I2) was proposed. This study provides insight into the synthesis of S-scheme heterojunction photocatalysts, which can efficiently degrade organic pollutants and inactivate bacteria under LED light irradiation.


Subject(s)
Environmental Pollutants , Escherichia coli , Anti-Bacterial Agents/pharmacology , Catalysis , Light , Staphylococcus aureus , Tetracycline/pharmacology
17.
J Colloid Interface Sci ; 613: 575-586, 2022 May.
Article in English | MEDLINE | ID: mdl-35065433

ABSTRACT

Developing the heterogeneous photocatalysts with high performance for carbon dioxide (CO2) conversion to solar fuels is remarkably significant for reducing the atmospheric CO2 level and achieving the target of carbon neutrality through the artificial photosynthesis strategies. However, it remains a great challenge for most of the photocatalysts to achieve the CO2-to-hydrocarbon conversion via a multi-proton coupled multi-electron reduction process. In this work, the cadmium-sulfide/gold/graphitic-carbon-nitride (CdS/Au/g-C3N4) heterojunction photocatalyst with sandwich nanostructures is designedly constructed by a selective two-step photodeposition process. The better separation of photogenerated electrons and holes in CdS/Au/g-C3N4 heterojunction creates the higher density of surface photogenerated electron, dynamically accelerating the multi-electron reduction of CO2. Moreover, the selective photodeposition of CdS on Au/g-C3N4 affords sufficient electron-enriched Sδ- active sites which are more beneficial to the provision of H adatoms. These advantages jointly improve the photocatalytic CO2 conversion to methane (CH4) via a multi-proton coupled multi-electron reduction process. The CH4 yield rate on CdS/Au/g-C3N4 photocatalyst is about twice that of CdS/g-C3N4, while g-C3N4 and Au/g-C3N4 only produce CO. The total electron utilization for CO2 reduction on CdS/Au/g-C3N4 photocatalyst is 6.9 times that of g-C3N4. Furthermore, the CdS/Au/g-C3N4 photocatalyst exhibits high stability in consecutive cycles of CO2 reduction reaction. The photocatalytic mechanism is proposed on the basis of in situ spectrographic analyses together with other detailed characterizations.

18.
Chemosphere ; 290: 133309, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34919917

ABSTRACT

To deal with the environmental pollution and energy crises, it is indispensable to find green and efficient means to overcome these challenges. Herein, the Sn-doped BiOI modified multi-shelled ZnO heterojunction composite with a high performance are designed and prepared. The results prove the formation of heterojunction structure in the composites and the morphology is shown as the multi-shelled microsphere. The performances of the composites are evaluated by different kinds of antibiotic degradation and H2-evolution under simulation sunlight irradiation. The measurements present that the Sn-BiOI/ZnO (SBZs) could completely remove ciprofloxacin (CIP) within 100 min, which is 4.18 times that of ZnO in kinetics. Typically, the degradation rate of CIP for SBZ6 is over 99.9%, which is more than 25% higher than that of pure ZnO microspheres. In addition, the rate of H2 production could reach 3.08 mmol g-1∙ h-1, which is 1.79 times of the pure ZnO microspheres. The boosted performance of the composites may originate from the enhanced electronic transmission efficiency and improved separation and recombination efficiency of electrons/holes. The charge transfer mode in the SBZs heterojunction composites is proposed and verified as the Z-scheme by the active species experimental and the possible electron transfer path analysis. Therefore, Sn-doped BiOI is introduced into multi-shelled ZnO microsphere to form contact heterojunction interfacial, which greatly improves the photocatalytic performances of the SBZs. Furthermore, this work supplies a strategy for designing and preparing highly active ZnO-based heterojunction composites, which could effectively address the challenges of environmental remediation and clean energy production.


Subject(s)
Zinc Oxide , Catalysis , Ciprofloxacin , Microspheres , Sunlight
19.
J Environ Sci (China) ; 112: 59-70, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34955223

ABSTRACT

In this study, a graphitic carbon nitride (g-C3N4) based ternary catalyst CuO/CuFe2O4/g-C3N4 (CCCN) is successfully prepared thorough calcination method. After confirming the structure and composition of CCCN, the as-synthesized composites are utilized to activate persulfate (PS) for the degradation of organic contaminant. While using tetracycline hydrochloride (TC) as pollutant surrogate, the effects of initial pH, PS and catalyst concentration on the degradation rate are systematically studied. Under the optimized reaction condition, CCCN/PS is able to give 99% degradation extent and 74% chemical oxygen demand removal in assistance of simulated solar light, both of which are apparently greater than that of either CuO/CuFe2O4 and pristine g-C3N4. The great improvement in degradation can be assignable to the effective separation of photoinduced carriers thanks to the integration between CuO/CuFe2O4 and g-C3N4, as well as the increased reaction sites given by the g-C3N4 substrate. Moreover, the scavenging trials imply that the major oxidative matters involved in the decomposition are hydroxyl radicals (•OH), superoxide radicals (•O2-) and photo-induced holes (h+).


Subject(s)
Sunlight , Tetracycline , Catalysis , Copper , Light
20.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885579

ABSTRACT

Water pollution has always been a serious problem across the world; therefore, facile pollutant degradation via light irradiation has been an attractive issue in the field of environmental protection. In this study, a type of Zn-based metal-organic framework (ZIF-8)-wrapped BiVO4 nanorod (BiVO4@ZIF-8) with high efficiency for photocatalytic wastewater treatment was synthesized through a two-step hydrothermal method. The heterojunction structure of BiVO4@ZIF-8 was confirmed by morphology characterization. Due to the introduction of mesoporous ZIF-8, the specific surface area reached up to 304.5 m2/g, which was hundreds of times larger than that of pure BiVO4 nanorods. Furthermore, the band gap of BiVO4@ZIF-8 was narrowed down to 2.35 eV, which enabled its more efficient utilization of visible light. After irradiation under visible light for about 40 min, about 80% of rhodamine B (RhB) was degraded, which was much faster than using pure BiVO4 or other BiVO4-based photocatalysts. The synergistic photocatalysis mechanism of BiVO4@ZIF-8 is also discussed. This study might offer new pathways for effective degradation of wastewater through facile design of novel photocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL