Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Diagnostics (Basel) ; 11(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445645

ABSTRACT

To investigate the role of diffuse pulmonary ossification (DPO) in disease severity in a population of Idiopathic Pulmonary Fibrosis (IPF) patients. This retrospective study was carried out on 95 IPF patients-44 with DPO on high resolution computed tomography (HRCT) and 51 with no calcifications detected on HRCT. Pulmonary Function Tests (PFTs) acquired nearest to the HRCT were collected. Images were analyzed by two radiologists using a qualitative method, based on HRCT fibrosis visual score, and using a quantitative method, based on histogram-based analysis. The Spearman's rank correlation coefficient was used to measure the strength and direction of the linear relationship between HRCT fibrosis score and PFTs; in addition, Spearman's rank correlation coefficient was used to explore the relationships between HRCT fibrosis score and quantitative index and between quantitative indexes and PFTs. A weak correlation between HRCT fibrosis score and PFTs was proven (r =-0.014 and p = 0.9347 for FVC (Forced Vital Capacity), r = -0.379 and p = 0.0174 for DLCO (Carbon monoxide diffusing capacity)). We found a moderate negative correlation between HRCT fibrosis score and kurtosis (r = -0.448, p = 0.004272) and skewness (r = -0.463, p = 0.003019) and a weak positive correlation with High Attenuation Area (HAA)% (r = 0.362, p = 0.0235). Moreover, a moderate linear correlation between Quantitative Indexes and FVC (r = 0.577, p = 0.000051 for kurtosis and FVC, r = 0.598, p = 0.000023 for skewness and FVC, r = -0.519, p = 0.0000364 for HAA% and FVC) and between quantitative indexes and DLCO (r = 0.469, p = 0.001508 for kurtosis, and DLCO, r = 0.474, p = 0.001309 for skewness and DLCO, r = -0.412, p = 0.005996 for HAA% and DLCO) was revealed. To better investigate the influence of DPO in disease progression, a longitudinal evaluation should be performed.

2.
J Transl Med ; 17(1): 182, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31262334

ABSTRACT

BACKGROUND: To evaluate the imaging biomarkers of human epidermal growth factor receptor 2 (HER2) positive breast cancer in comparison to other molecular subtypes and to determine the feasibility of identifying hormone receptor (HR) status and lymph node metastasis status using volumetric-tumour histogram-based analysis through intravoxel incoherent motion (IVIM) and non-Gaussian diffusion. METHODS: This study included 145 breast cancer patients with 148 lesions between January and November in 2018. Among the 148 lesions, 74 were confirmed to be HER2-positive. The volumetric-tumour histogram-based features were extracted from the combined IVIM and non-Gaussian diffusion model. IVIM and non-Gaussian diffusion parameters obtained from images of the subjects with different molecular prognostic biomarker statuses were compared by Student's t test or the Mann-Whitney U test. The area under the curve (AUC), sensitivity, and specificity at the best cut-off point were reported. The Spearman correlation coefficient was calculated to analyse the correlations of clinical tumor nodule metastasis (TNM) stage and Ki67 with the IVIM and non-Gaussian diffusion parameters. RESULTS: The entropy of mean kurtosis (MK) was significantly higher in the HER2-positive group than in the HER2-negative group (p = 0.015), with an AUC of 0.629 (95% CI 0.546, 0.707), a sensitivity of 62.6%, and a specificity of 66.2%. For HR status, the MD 5th percentile was higher in the HR-positive group of HER2-positive breast cancer (p = 0.041), with an AUC of 0.643 (95% CI 0.523, 0.751), while for lymph node status, the entropy of mean diffusivity (MK) was lower in the lymph node positive group (p = 0.040), with an AUC of 0.587 (95% CI 0.504, 0.668). The clinical TNM stage and Ki67 index were correlated with several histogram parameters. CONCLUSION: Volumetric-lesion histogram analysis of IVIM and the non-Gaussian diffusion model can be used to provide prognostic information about HER2-positive breast cancers and potentially contribute to individualized anti-HER2 targeted therapy plans .


Subject(s)
Algorithms , Breast Neoplasms/diagnosis , Computer Graphics , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Tumor Burden , Adult , Area Under Curve , Biomarkers, Tumor/analysis , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Diffusion , Feasibility Studies , Female , Humans , Image Processing, Computer-Assisted/standards , Middle Aged , Motion , Prognosis , ROC Curve , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism
3.
J Alzheimers Dis ; 65(3): 819-842, 2018.
Article in English | MEDLINE | ID: mdl-29966190

ABSTRACT

This paper proposes a novel fully automatic computer-aided diagnosis (CAD) system for the early detection of Alzheimer's disease (AD) based on supervised machine learning methods. The novelty of the approach, which is based on histogram analysis, is twofold: 1) a feature extraction process that aims to detect differences in brain regions of interest (ROIs) relevant for the recognition of subjects with AD and 2) an original greedy algorithm that predicts the severity of the effects of AD on these regions. This algorithm takes account of the progressive nature of AD that affects the brain structure with different levels of severity, i.e., the loss of gray matter in AD is found first in memory-related areas of the brain such as the hippocampus. Moreover, the proposed feature extraction process generates a reduced set of attributes which allows the use of general-purpose classification machine learning algorithms. In particular, the proposed feature extraction approach assesses the ROI image separability between classes in order to identify the ones with greater discriminant power. These regions will have the highest influence in the classification decision at the final stage. Several experiments were carried out on segmented magnetic resonance images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) in order to show the benefits of the overall method. The proposed CAD system achieved competitive classification results in a highly efficient and straightforward way.


Subject(s)
Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Aged , Alzheimer Disease/pathology , Brain/pathology , Early Diagnosis , Female , Follow-Up Studies , Humans , Longitudinal Studies , Machine Learning , Male , Multivariate Analysis , Organ Size , Sensitivity and Specificity
4.
Korean J Radiol ; 19(1): 119-129, 2018.
Article in English | MEDLINE | ID: mdl-29354008

ABSTRACT

Objective: To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods: In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results: Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion: The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose).


Subject(s)
Algorithms , Radiographic Image Interpretation, Computer-Assisted , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Adult , Humans , Male , Phantoms, Imaging , Radiation Dosage , Signal-To-Noise Ratio , Tomography, X-Ray Computed/instrumentation
5.
Article in English | WPRIM (Western Pacific) | ID: wpr-741377

ABSTRACT

OBJECTIVE: To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. MATERIALS AND METHODS: In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. RESULTS: Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. CONCLUSION: The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose).


Subject(s)
Adult , Humans , Cone-Beam Computed Tomography , Noise , Signal-To-Noise Ratio , Thorax , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL