Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36678613

ABSTRACT

Accumulating evidence (mainly from experimental research) suggests that metformin possesses anticancer properties through the induction of apoptosis and inhibition of the growth and proliferation of cancer cells. However, its effect on the enzymes responsible for histone acetylation status, which plays a key role in carcinogenesis, remains unclear. Therefore, the aim of our study was to evaluate the impact of metformin on histone acetyltransferases (HATs) (i.e., p300/CBP-associated factor (PCAF), p300, and CBP) and on histone deacetylases (HDACs) (i.e., SIRT-1 in human pancreatic cancer (PC) cell lines, 1.2B4, and PANC-1). The cells were exposed to metformin, an HAT inhibitor (HATi), or a combination of an HATi with metformin for 24, 48, or 72 h. Cell viability was determined using an MTT assay, and the percentage of early apoptotic cells was determined with an Annexin V-Cy3 Apoptosis Detection Assay Kit. Caspase-9 activity was also assessed. SIRT-1, PCAF, p300, and CBP expression were determined at the mRNA and protein levels using RT-PCR and Western blotting methods, respectively. Our results reveal an increase in caspase-9 in response to the metformin, indicating that it induced the apoptotic death of both 1.2B4 and PANC-1 cells. The number of cells in early apoptosis and the activity of caspase-9 decreased when treated with an HATi alone or a combination of an HATi with metformin, as compared to metformin alone. Moreover, metformin, an HATi, and a combination of an HATi with metformin also modified the mRNA expression of SIRT-1, PCAF, CBP, and p300. However, metformin did not change the expression of the studied genes in 1.2B4 cells. The results of the Western blot analysis showed that metformin diminished the protein expression of PCAF in both the 1.2B4 and PANC-1 cells. Hence, it appears possible that PCAF may be involved in the metformin-mediated apoptosis of PC cells.

2.
Int J Mol Sci ; 23(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36012156

ABSTRACT

Among Histone post-translational modifications (PTMs), lysine acetylation plays a pivotal role in the epigenetic regulation of gene expression, mediated by chromatin modifying enzymes. Due to their activity in physiology and pathology, several chemical compounds have been developed to inhibit the function of these proteins. However, the pleiotropy of these classes of proteins represents a weakness of epigenetic drugs. Ideally, a new generation of epigenetic drugs should target with molecular precision individual acetylated lysines on the target protein. We exploit a PTM-directed interference, based on an intrabody (scFv-58F) that selectively binds acetylated lysine 9 of histone H3 (H3K9ac), to test the hypothesis that targeting H3K9ac yields more specific effects than inhibiting the corresponding HAT enzyme that installs that PTM. In yeast scFv-58F modulates, gene expression in a more specific way, compared to two well-established HAT inhibitors. This PTM-specific interference modulated expression of genes involved in ribosome biogenesis and function. In mammalian cells, the scFv-58F induces exclusive changes in the H3K9ac-dependent expression of specific genes. These results suggest the H3K9ac-specific intrabody as the founder of a new class of molecules to directly target histone PTMs, inverting the paradigm from inhibiting the writer enzyme to acting on the PTM.


Subject(s)
Histones , Lysine , Acetylation , Animals , Epigenesis, Genetic , Gene Expression , Histone Acetyltransferases/metabolism , Histones/metabolism , Lysine/metabolism , Mammals/metabolism , Protein Processing, Post-Translational
3.
Biomedicines ; 11(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36672596

ABSTRACT

Epilepsy is a common and severe chronic neurological disorder. Recently, post-translational modification (PTM) mechanisms, especially protein acetylation modifications, have been widely studied in various epilepsy models or patients. Acetylation is regulated by two classes of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs catalyze the transfer of the acetyl group to a lysine residue, while HDACs catalyze acetyl group removal. The expression of many genes related to epilepsy is regulated by histone acetylation and deacetylation. Moreover, the acetylation modification of some non-histone substrates is also associated with epilepsy. Various molecules have been developed as HDAC inhibitors (HDACi), which have become potential antiepileptic drugs for epilepsy treatment. In this review, we summarize the changes in acetylation modification in epileptogenesis and the applications of HDACi in the treatment of epilepsy as well as the mechanisms involved. As most of the published research has focused on the differential expression of proteins that are known to be acetylated and the knowledge of whole acetylome changes in epilepsy is still minimal, a further understanding of acetylation regulation will help us explore the pathological mechanism of epilepsy and provide novel ideas for treating epilepsy.

4.
Genes (Basel) ; 12(9)2021 09 13.
Article in English | MEDLINE | ID: mdl-34573391

ABSTRACT

Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.


Subject(s)
Dehydration/metabolism , Droughts , Histones/metabolism , Plant Development/physiology , Acetylation , Adaptation, Biological/genetics , Adaptation, Biological/physiology , Dehydration/genetics , Dehydration/physiopathology , Histone Acetyltransferases/metabolism , Histone Deacetylases/metabolism , Plant Development/genetics , Protein Processing, Post-Translational
5.
Cell Mol Life Sci ; 78(10): 4467-4486, 2021 May.
Article in English | MEDLINE | ID: mdl-33638653

ABSTRACT

Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.


Subject(s)
Histones/metabolism , Plant Development/physiology , Plants/metabolism , Stress, Physiological/physiology , Acetylation , Humans
6.
J Biol Chem ; 296: 100073, 2021.
Article in English | MEDLINE | ID: mdl-33187986

ABSTRACT

Tubby-like proteins (TULPs) are characterized by a conserved C-terminal domain that binds phosphoinositides. Collectively, mammalian TULP1-4 proteins play essential roles in intracellular transport, cell differentiation, signaling, and motility. Yet, little is known about how the function of these proteins is regulated in cells. Here, we present the protein-protein interaction network of TULP3, a protein that is responsible for the trafficking of G-protein-coupled receptors to cilia and whose aberrant expression is associated with severe developmental disorders and polycystic kidney disease. We identify several protein interaction nodes linked to TULP3 that include enzymes involved in acetylation and ubiquitination. We show that acetylation of two key lysine residues on TULP3 by p300 increases TULP3 protein abundance and that deacetylation of these sites by HDAC1 decreases protein levels. Furthermore, we show that one of these sites is ubiquitinated in the absence of acetylation and that acetylation inversely correlates with ubiquitination of TULP3. This mechanism is evidently conserved across species and is active in zebrafish during development. Finally, we identify this same regulatory module in TULP1, TULP2, and TULP4 and demonstrate that the stability of these proteins is similarly modulated by an acetylation switch. This study unveils a signaling pathway that links nuclear enzymes to ciliary membrane receptors via TULP3, describes a dynamic mechanism for the regulation of all tubby-like proteins, and explores how to exploit it pharmacologically using drugs.


Subject(s)
Eye Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Eye Proteins/genetics , HEK293 Cells , HeLa Cells , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Stability , p300-CBP Transcription Factors/genetics
7.
DNA Repair (Amst) ; 93: 102931, 2020 09.
Article in English | MEDLINE | ID: mdl-33087268

ABSTRACT

In addition to the key roles of reversible acetylation of histones in chromatin in epigenetic regulation of gene expression, acetylation of nonhistone proteins by histone acetyltransferases (HATs) p300 and CBP is involved in DNA transactions, including repair of base damages and strand breaks. We characterized acetylation of human NEIL1 DNA glycosylase and AP-endonuclease 1 (APE1), which initiate repair of oxidized bases and single-strand breaks (SSBs), respectively. Acetylation induces localized conformation change because of neutralization of the positive charge of specific acetyl-acceptor Lys residues, which are often present in clusters. Acetylation in NEIL1, APE1, and possibly other base excision repair (BER)/SSB repair (SSBR) enzymes by HATs, prebound to chromatin, induces assembly of active repair complexes on the chromatin. In this review, we discuss the roles of acetylation of NEIL1 and APE1 in modulating their activities and complex formation with other proteins for fine-tuning BER in chromatin. Further, the implications of promoter/enhancer-bound acetylated BER protein complexes in the regulation of transcriptional activation, mediated by complex interplay of acetylation and demethylation of histones are discussed.


Subject(s)
DNA Glycosylases/metabolism , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Protein Processing, Post-Translational , Acetylation , DNA/metabolism , DNA Damage , Histone Acetyltransferases/metabolism , Humans
8.
ChemMedChem ; 9(3): 537-41, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24446345

ABSTRACT

Tip60, the 60 kDa HIV-1 Tat-interactive protein, is a key member of the MYST family of histone acetyltransferases (HATs) and plays critical roles in apoptosis and DNA repair. Potent and selective inhibitors of Tip60 are valuable tools for studying the functions of this potential drug target. In this work, we designed, synthesized and evaluated a new set of substrate-based inhibitors containing multiple binding modalities. In addition to the coenzyme A (CoA) moiety and the histone H3 peptide backbone, mono- and tri-methyl marks were incorporated at Lys 4 and/or Lys 9 sites in the H3 peptide substrate. The biochemical assay results showed that the presence of methyl group(s) on the substrate resulted in more potent inhibitors of Tip60, relative to the parent H3-CoA bisubstrate inhibitor. Importantly, by comparing the inhibitory properties of the ligands against full-length Tip60 and the HAT domain, we determined that the K4me1 and K9me3 marks contributed to the potency augmentation by interacting with the catalytic region of the enzyme.


Subject(s)
Drug Design , Histone Acetyltransferases/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Lysine Acetyltransferase 5 , Molecular Structure , Structure-Activity Relationship , Substrate Specificity
9.
Cancer Treat Rev ; 40(1): 153-69, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23831234

ABSTRACT

Genetic mutations and gross structural defects in the DNA sequence permanently alter genetic loci in ways that significantly disrupt gene function. In sharp contrast, genes modified by aberrant epigenetic modifications remain structurally intact and are subject to partial or complete reversal of modifications that restore the original (i.e. non-diseased) state. Such reversibility makes epigenetic modifications ideal targets for therapeutic intervention. The epigenome of cancer cells is extensively modified by specific hypermethylation of the promoters of tumor suppressor genes relative to the extensive hypomethylation of repetitive sequences, overall loss of acetylation, and loss of repressive marks at microsatellite/repeat regions. In this review, we discuss emerging therapies targeting specific epigenetic modifications or epigenetic modifying enzymes either alone or in combination with other treatment regimens. The limitations posed by cancer treatments elicit unintended epigenetic modifications that result in exacerbation of tumor progression are also discussed. Lastly, a brief discussion of the specificity restrictions posed by epigenetic therapies and ways to address such limitations is presented.


Subject(s)
Epigenesis, Genetic , Molecular Targeted Therapy , Neoplasms/drug therapy , Animals , DNA Methylation , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histones/metabolism , Humans , Neoplasms/genetics , Protein Processing, Post-Translational/drug effects
10.
Front Cell Neurosci ; 7: 30, 2013.
Article in English | MEDLINE | ID: mdl-23543406

ABSTRACT

Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in neurodegenerative diseases and the future promising prospects of using specific HAT based therapeutic approaches.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-592647

ABSTRACT

Histone acetyltransferases (HATs) are involved in the regulation of gene transcription in eukaryotic cells and their inhibitors could be a promising class of drugs due to their ability to modulate transcription and exert antiviral, anti-inflammatory as well as antioxidant effects. Nonradioactive spectrophotometric HAT assay is an alternative method to the widespread radioactive assay but suffers from drawbacks as lack of sensitivity and accuracy. A simple, non-radioactive fluorescent assay that measures the production of CoASH was established by its facile reaction with O-phthalaldehyde and 2-amino-ethanol. This method gives much higher accuracy compared to spectrophotometric assay, and allows screening of various compounds with potential HAT inhibition. The novel assay should be a valuable tool in transcriptional research and especially drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL