Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Biol Res ; 57(1): 28, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750549

ABSTRACT

BACKGROUND: The activated microglia have been reported as pillar factors in neuropathic pain (NP) pathology, but the molecules driving pain-inducible microglial activation require further exploration. In this study, we investigated the effect of dorsal root ganglion (DRG)-derived exosomes (Exo) on microglial activation and the related mechanism. METHODS: A mouse model of NP was generated by spinal nerve ligation (SNL), and DRG-derived Exo were extracted. The effects of DRG-Exo on NP and microglial activation in SNL mice were evaluated using behavioral tests, HE staining, immunofluorescence, and western blot. Next, the differentially enriched microRNAs (miRNAs) in DRG-Exo-treated microglia were analyzed using microarrays. RT-qPCR, RNA pull-down, dual-luciferase reporter assay, and immunofluorescence were conducted to verify the binding relation between miR-16-5p and HECTD1. Finally, the effects of ubiquitination modification of HSP90 by HECTD1 on NP progression and microglial activation were investigated by Co-IP, western blot, immunofluorescence assays, and rescue experiments. RESULTS: DRG-Exo aggravated NP resulting from SNL in mice, promoted the activation of microglia in DRG, and increased neuroinflammation. miR-16-5p knockdown in DRG-Exo alleviated the stimulating effects of DRG-Exo on NP and microglial activation. DRG-Exo regulated the ubiquitination of HSP90 through the interaction between miR-16-5p and HECTD1. Ubiquitination alteration of HSP90 was involved in microglial activation during NP. CONCLUSIONS: miR-16-5p shuttled by DRG-Exo regulated the ubiquitination of HSP90 by interacting with HECTD1, thereby contributing to the microglial activation in NP.


Subject(s)
Exosomes , Ganglia, Spinal , HSP90 Heat-Shock Proteins , MicroRNAs , Microglia , Neuralgia , Animals , Male , Mice , Disease Models, Animal , Exosomes/metabolism , Ganglia, Spinal/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mice, Inbred C57BL , Microglia/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Neuralgia/metabolism , Neuralgia/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
2.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38658187

ABSTRACT

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Subject(s)
Antifungal Agents , Candida parapsilosis , Candidemia , HSP90 Heat-Shock Proteins , Micafungin , Humans , Infant, Newborn , Antifungal Agents/pharmacology , Benzoquinones/pharmacology , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candida parapsilosis/genetics , Candidemia/microbiology , Drug Resistance, Fungal , Drug Synergism , Echinocandins/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Lactams, Macrocyclic/pharmacology , Lipopeptides/pharmacology , Micafungin/pharmacology , Microbial Sensitivity Tests
3.
Biomedicines ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38672098

ABSTRACT

Dyslipidemias involving high concentrations of low-density lipoproteins (LDLs) increase the risk of developing triple-negative breast cancer (TNBC), wherein cholesterol metabolism and protein translation initiation mechanisms have been linked with chemoresistance. Doxorubicin (Dox) treatment, a member of the anthracycline family, represents a typical therapeutic strategy; however, chemoresistance remains a significant challenge. Exosomes (Exs) secreted by tumoral cells have been implicated in cell communication pathways and chemoresistance mechanisms; the content of exosomes is an outcome of cellular cholesterol metabolism. We previously induced Dox resistance in TNBC cell models, characterizing a variant denominated as variant B cells. Our results suggest that LDL internalization in parental and chemoresistant variant B cells is associated with increased cell proliferation, migration, invasion, and spheroid growth. We identified the role of eIF4F translation initiation factor and the down-regulation of tumor suppressor gene PDCD4, an inhibitor of eIF4A, in chemoresistant variant B cells. In addition, the exomes secreted by variant B cells were characterized by the protein content, electronic microscopy, and cell internalization assays. Critically, exosomes purified from LDL-treated variant B cell promoted cell proliferation, migration, and an increment in lactate concentration. Our results suggest that an autocrine phenomenon induced by exosomes in chemoresistant cells may induce modifications on signaling mechanisms of the p53/Mdm2 axis and activation of p70 ribosomal protein kinase S6. Moreover, the specific down-regulated profile of chaperones Hsp90 and Hsp70 secretion inside the exosomes of the chemoresistant variant could be associated with this phenomenon. Therefore, autocrine activation mediated by exosomes and the effect of LDL internalization may influence changes in exosome chaperone content and modulate proliferative signaling pathways, increasing the aggressiveness of MDA-MB-231 chemoresistant cells.

4.
J Histochem Cytochem ; 72(3): 173-188, 2024 03.
Article in English | MEDLINE | ID: mdl-38439738

ABSTRACT

Cisplatin (cPt) is a commonly used treatment for solid tumors. The main target of its cytotoxicity is the DNA molecule, which makes the DNA damage response (DDR) crucial for cPt-based chemotherapy. Therefore, it is essential to identify biomarkers that can accurately predict the individual clinical response and prognosis. Our goal was to assess the usefulness of alkaline comet assay and immunocytochemical staining of phosphorylated Hsp90α (p-Hsp90α), γH2AX, and 53BP1 as predictive/prognostic markers. Pre-chemotherapy peripheral blood leukocytes were exposed to cPt in vitro and collected at 0, 24 (T24), and 48 (T48) hr post-drug removal. Healthy subjects were also included. Baseline DNA damage was elevated in cancer patients (variability between individuals was observed). After cPt, patients showed increased γH2AX foci/nucleus (T24 and T48). Both in healthy persons and patients, the nuclear p-Hsp90α and N/C (nuclear/cytoplasmic) ratio augmented (T24), decreasing at T48. Favorable clinical response was associated with high DNA damage and p-Hsp90α N/C ratio following cPt. For the first time, p-Hsp90α significance as a predictive marker is highlighted. Post-cPt-DNA damage was associated with longer disease-free survival and overall survival. Our findings indicate that comet assay and p-Hsp90α (a marker of DDR) would be promising prognostic/predictive tools in cP-treated cancer patients.


Subject(s)
Cisplatin , Neoplasms , Humans , Comet Assay , Cisplatin/pharmacology , Cisplatin/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , DNA Damage , Leukocytes
5.
Biol. Res ; 572024.
Article in English | LILACS-Express | LILACS | ID: biblio-1564043

ABSTRACT

Background The activated microglia have been reported as pillar factors in neuropathic pain (NP) pathology, but the molecules driving pain-inducible microglial activation require further exploration. In this study, we investigated the effect of dorsal root ganglion (DRG)-derived exosomes (Exo) on microglial activation and the related mechanism. Methods A mouse model of NP was generated by spinal nerve ligation (SNL), and DRG-derived Exo were extracted. The effects of DRG-Exo on NP and microglial activation in SNL mice were evaluated using behavioral tests, HE staining, immunofluorescence, and western blot. Next, the differentially enriched microRNAs (miRNAs) in DRG-Exo-treated microglia were analyzed using microarrays. RT-qPCR, RNA pull-down, dual-luciferase reporter assay, and immunofluorescence were conducted to verify the binding relation between miR-16-5p and HECTD1. Finally, the effects of ubiquitination modification of HSP90 by HECTD1 on NP progression and microglial activation were investigated by Co-IP, western blot, immunofluorescence assays, and rescue experiments. Results DRG-Exo aggravated NP resulting from SNL in mice, promoted the activation of microglia in DRG, and increased neuroinflammation. miR-16-5p knockdown in DRG-Exo alleviated the stimulating effects of DRG-Exo on NP and microglial activation. DRG-Exo regulated the ubiquitination of HSP90 through the interaction between miR-16-5p and HECTD1. Ubiquitination alteration of HSP90 was involved in microglial activation during NP. Conclusions miR-16-5p shuttled by DRG-Exo regulated the ubiquitination of HSP90 by interacting with HECTD1, thereby contributing to the microglial activation in NP.

6.
Microbiol Spectr ; 11(6): e0296023, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37905935

ABSTRACT

IMPORTANCE: In the unicellular parasites Leishmania spp., the etiological agents of leishmaniasis, a complex infectious disease that affects 98 countries in 5 continents, chemical inhibition of HSP90 protein leads to differentiation from promastigote to amastigote stage. Recent studies indicate potential role for protein phosphorylation in the life cycle control of Leishmania. Also, recent studies suggest a fundamentally important role of RNA-binding proteins (RBPs) in regulating the downstream effects of the HSP90 inhibition in Leishmania. Phosphorylation-dephosphorylation dynamics of RBPs in higher eukaryotes serves as an important on/off switch to regulate RNA processing and decay in response to extracellular signals and cell cycle check points. In the current study, using a combination of highly sensitive TMT labeling-based quantitative proteomic MS and robust phosphoproteome enrichment, we show for the first time that HSP90 inhibition distinctively modulates global protein phosphorylation landscapes in the different life cycle stages of Leishmania, shedding light into a crucial role of the posttranslational modification in the differentiation of the parasite under HSP90 inhibition stress. We measured changes in phosphorylation of many RBPs and signaling proteins including protein kinases upon HSP90 inhibition in the therapeutically relevant amastigote stage. This work provides insights into the importance of HSP90-mediated protein cross-talks and regulation of phosphorylation in Leishmania, thus significantly expanding our knowledge of the posttranslational modification in Leishmania biology.


Subject(s)
Leishmania mexicana , Leishmania , Leishmania mexicana/metabolism , Proteomics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Leishmania/metabolism , HSP90 Heat-Shock Proteins/metabolism , Proteome/metabolism
7.
Mol Cell Endocrinol ; 577: 112047, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37604241

ABSTRACT

The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins. The model shows that upon steroid binding, FKBP52 is recruited to the GR allowing its active retrograde transport on cytoskeletal tracks. Then, the entire GR heterocomplex translocates through the nuclear pore complex. The HSP90-based heterocomplex is released in the nucleoplasm followed by receptor dimerization. Subsequent findings demonstrated that the transportosome is also responsible for the retrotransport of other soluble proteins. Importantly, the disruption of this molecular oligomer leads to several diseases. In this article, we discuss the relevance of this transport machinery in health and disease.

8.
Microbiol Spectr ; 11(3): e0162723, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37195179

ABSTRACT

Thermotolerance is a remarkable virulence attribute of Aspergillus fumigatus, but the consequences of heat shock (HS) to the cell membrane of this fungus are unknown, although this structure is one of the first to detect changes in ambient temperature that imposes on the cell a prompt adaptative response. Under high-temperature stress, fungi trigger the HS response controlled by heat shock transcription factors, such as HsfA, which regulates the expression of heat shock proteins. In yeast, smaller amounts of phospholipids with unsaturated fatty acid (FA) chains are synthesized in response to HS, directly affecting plasma membrane composition. The addition of double bonds in saturated FA is catalyzed by Δ9-fatty acid desaturases, whose expression is temperature-modulated. However, the relationship between HS and saturated/unsaturated FA balance in membrane lipids of A. fumigatus in response to HS has not been investigated. Here, we found that HsfA responds to plasma membrane stress and has a role in sphingolipid and phospholipid unsaturated biosynthesis. In addition, we studied the A. fumigatus Δ9-fatty acid desaturase sdeA and discovered that this gene is essential and required for unsaturated FA biosynthesis, although it did not directly affect the total levels of phospholipids and sphingolipids. sdeA depletion significantly sensitizes mature A. fumigatus biofilms to caspofungin. Also, we demonstrate that hsfA controls sdeA expression, while SdeA and Hsp90 physically interact. Our results suggest that HsfA is required for the adaptation of the fungal plasma membrane to HS and point out a sharp relationship between thermotolerance and FA metabolism in A. fumigatus. IMPORTANCE Aspergillus fumigatus causes invasive pulmonary aspergillosis, a life-threatening infection accounting for high mortality rates in immunocompromised patients. The ability of this organism to grow at elevated temperatures is long recognized as an essential attribute for this mold to cause disease. A. fumigatus responds to heat stress by activating heat shock transcription factors and chaperones to orchestrate cellular responses that protect the fungus against damage caused by heat. Concomitantly, the cell membrane must adapt to heat and maintain physical and chemical properties such as the balance between saturated/unsaturated fatty acids. However, how A. fumigatus connects these two physiological responses is unclear. Here, we explain that HsfA affects the synthesis of complex membrane lipids such as phospholipids and sphingolipids and controls the enzyme SdeA, which produces monounsaturated fatty acids, raw material for membrane lipids. These findings suggest that forced dysregulation of saturated/unsaturated fatty acid balance might represent novel strategies for antifungal therapy.


Subject(s)
Aspergillus fumigatus , Thermotolerance , Humans , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Thermotolerance/physiology , Heat Shock Transcription Factors/metabolism , Fatty Acids/metabolism , Saccharomyces cerevisiae/metabolism , Phospholipids/metabolism , Membrane Lipids/metabolism , Sphingolipids/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
9.
Proteomes ; 11(1)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36976888

ABSTRACT

Toxoplasma gondii is an obligate intracellular apicomplexan that causes toxoplasmosis in humans and animals. Central to its dissemination and pathogenicity is the ability to rapidly divide in the tachyzoite stage and infect any type of nucleated cell. Adaptation to different cell contexts requires high plasticity in which heat shock proteins (Hsps) could play a fundamental role. Tgj1 is a type I Hsp40 of T. gondii, an ortholog of the DNAJA1 group, which is essential during the tachyzoite lytic cycle. Tgj1 consists of a J-domain, ZFD, and DNAJ_C domains with a CRQQ C-terminal motif, which is usually prone to lipidation. Tgj1 presented a mostly cytosolic subcellular localization overlapping partially with endoplasmic reticulum. Protein-protein Interaction (PPI) analysis showed that Tgj1 could be implicated in various biological pathways, mainly translation, protein folding, energy metabolism, membrane transport and protein translocation, invasion/pathogenesis, cell signaling, chromatin and transcription regulation, and cell redox homeostasis among others. The combination of Tgj1 and Hsp90 PPIs retrieved only 70 interactors linked to the Tgj1-Hsp90 axis, suggesting that Tgj1 would present specific functions in addition to those of the Hsp70/Hsp90 cycle, standing out invasion/pathogenesis, cell shape motility, and energy pathway. Within the Hsp70/Hsp90 cycle, translation-associated pathways, cell redox homeostasis, and protein folding were highly enriched in the Tgj1-Hsp90 axis. In conclusion, Tgj1 would interact with a wide range of proteins from different biological pathways, which could suggest a relevant role in them.

10.
Clin Transl Oncol ; 25(8): 2587-2606, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37000291

ABSTRACT

BACKGROUND: Bladder cancer (BLCA) is defined as a type of urinary cancer with high incidence and lack of specific biomarkers and drug targets. Immunogenic cell death (ICD) has been classified as a regulated type of cell death. Growing evidence suggested that ICD can reshape the tumor immune microenvironment, which may contribute to the development of immunotherapy strategies. The aim of this study was to reveal the specific mechanism of ICD in bladder cancer and to further predict the prognostic immunotherapy outcomes. METHODS: By consensus clustering analysis, bladder cancer patients in TCGA database were divided into different ICD subtypes. Additionally, we developed an ICD-scoring system and constructed the ICD score-based risk signature and nomogram to better characterize patients. Furthermore, we carried out a series of experiments to verify the relevant findings. RESULTS: Based on the transcriptome expression levels of ICD-related genes, a total of 403 BLCA patients in the TCGA database were divided into two subgroups with different ICD molecular patterns by consensus cluster analysis. These subgroups showed different clinicopathological features, survival outcomes, tumor microenvironment (TME) characteristics, immune-related scores, and treatment response. Moreover, the established prediction model and ICD score can effectively distinguish high risk/score patients from low risk/score patients, which has excellent predictive value. Finally, we found that the key gene HSP90AA1 was highly expressed in the high-ICD score group and in bladder cancer tissues, and was confirmed to be associated with the proliferation of bladder cancer cells. CONCLUSION: To sum up, we established a new classification system for BLCA based on ICD-related genes. This stratification has significant predictive power for clinical outcomes and can effectively evaluate the prognosis and immunotherapy of BLCA patients. Finally, it was proved that HSP90AA1 was highly expressed in BLCA and would be a promising therapeutic target for BLCA.


Subject(s)
Immunogenic Cell Death , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder , Immunotherapy , Cell Death , Tumor Microenvironment , Prognosis , HSP90 Heat-Shock Proteins/genetics
11.
Viruses ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: mdl-36016425

ABSTRACT

To uncover novel genes associated with the Sugarcane mosaic virus (SCMV) response, we used RNA-Seq data to analyze differentially expressed genes (DEGs) and transcript expression pattern clusters between a tolerant/resistant (CI-RL1) and a susceptible (B73) line, in addition to the F1 progeny (CI-RL1xB73). A Gene Ontology (GO) enrichment of DEGs led us to propose three genes possibly associated with the CI-RL1 response: a heat shock 90-2 protein and two ABC transporters. Through a clustering analysis of the transcript expression patterns (CTEPs), we identified two genes putatively involved in viral systemic spread: the maize homologs to the PIEZO channel (ZmPiezo) and to the Potyvirus VPg Interacting Protein 1 (ZmPVIP1). We also observed the complex behavior of the maize eukaryotic factors ZmeIF4E and Zm-elfa (involved in translation), homologs to eIF4E and eEF1α in A. thaliana. Together, the DEG and CTEPs results lead us to suggest that the tolerant/resistant CI-RL1 response to the SCMV encompasses the action of diverse genes and, for the first time, that maize translation factors are associated with viral interaction.


Subject(s)
Potyvirus , Zea mays , Gene Expression Regulation, Plant , Plant Diseases/genetics , Potyvirus/genetics
12.
Clin Transl Oncol ; 24(11): 2222-2230, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35871126

ABSTRACT

BACKGROUND: Ovarian cancer (OC) as the most fatal gynecological malignancy worldwide, with epithelial ovarian cancer (EOC) being the predominant and most lethal form, poses a serious threat to human health. LC3-positive extracellular vesicles (LC3+ EVs) promote tumorigenesis by educating CD4+ T cells in a murine melanoma model. However, regulation of LC3+ EVs in human EOC remains largely unknown.  METHODS: Differential analysis of Rab8a, Hsp90α and Il6 expression was performed using GEPIA2. The number of LC3+ EVs and the frequency of Heat shock protein 90α+ LC3+ EVs (HSP90α+ LC3+ EVs) in the ascites of EOC patients were tested by flow cytometry. IL-6, IL-10, IFN-γ, IL-4 and TGF-ß were measured by ELISA. CD4+ T cells were isolated from peripheral blood of healthy human donors using MACS magnetic bead technology.  RESULTS: Higher Rab8a, Hsp90a and Il6 expression of cancer tissues compared with normal adjacent tissues in OC were found. The level of IL-6 was positively correlated with LC3+ EVs number, HSP90α+ LC3+ EVs percentage in the ascites, and ROMA index of the patient. In addition, elevated IL-6 production by CD4+ T cells induced by LC3+ EVs was observed, which was suppressed by anti-HSP90α or anti-TLR2.  CONCLUSIONS: LC3+ EVs level and HSP90α+ LC3+ EVs percentage were associated with elevated IL-6 in the ascites of EOC patients. HSP90α on LC3+ EVs from human EOC could stimulate CD4+ T cell production of IL-6 via TLR2.


Subject(s)
CD4-Positive T-Lymphocytes , Extracellular Vesicles , Ovarian Neoplasms , Animals , Ascites , Carcinoma, Ovarian Epithelial , Female , Heat-Shock Proteins , Humans , Interleukin-10 , Interleukin-4 , Interleukin-6 , Mice , Microtubule-Associated Proteins , Ovarian Neoplasms/pathology , T-Lymphocytes/metabolism , Transforming Growth Factor beta
13.
Biochimie ; 200: 99-106, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35643212

ABSTRACT

The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion. We describe the expression, purification, and characterization of ORF9b alone or coexpressed with the cytosolic domain of human TOM70 in E. coli. ORF9b has 97 residues and was purified as a homodimer with an molecular mass of 22 kDa as determined by SEC-MALS. Circular dichroism experiments showed that Orf9b alone exhibits a random conformation. The ORF9b-TOM70 complex characterized by CD and differential scanning calorimetry showed that the complex is folded and more thermally stable than free TOM70, indicating strong binding. Importantly, protein-protein interaction assays demonstrated that full-length human Hsp90 is capable of binding to free TOM70 but not to the ORF9b-TOM70 complex. To narrow down the nature of this inhibition, the isolated C-terminal domain of Hsp90 was also tested. These results were used to build a model of the mechanism of inhibition, in which ORF9b efficiently targets two sites of interaction between TOM70 and Hsp90. The findings showed that ORF9b complexed with TOM70 prevents the interaction with Hsp90, and this is one major explanation for SARS-CoV-2 evasion of host innate immunity via the inhibition of the interferon activation pathway.


Subject(s)
COVID-19 , SARS-CoV-2 , Carrier Proteins/metabolism , Escherichia coli/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Pandemics , Protein Binding
14.
Photodiagnosis Photodyn Ther ; 40: 103174, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36602069

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is used to treat tumors through selective cytotoxic effects. PDT induces damage-associated molecular patterns (DAMPs) expression, which can cause an immunogenic death cell (IDC). In this study we identified potential immunogenic epitopes generated by PDT on triple-negative breast cancer cell line (MDA-MB-231). METHODS: MDA-MB-231 cells were exposed to PDT using ALA (160 µg/mL)/630 nm at 8 J/cm2. Membrane proteins were extracted and separated by 2D PAGE. Proteins overexpressed were identified by LC-MS/MS and analyzed in silico through a peptide-HLA docking in order to identify the epitopes with more immunogenicity and antigenicity properties, as well as lower allergenicity and toxicity activity. The selected peptides were evaluated in response to macrophage activation and cytokine release by flow cytometry. RESULTS: Differential proteins were overexpressed in the cells treated with PDT. A group of 16 peptides were identified from them, established in a rigorous selection by measuring antigenicity, immunogenicity, allergenicity, and toxicity in silico. The final selection was based on molecular dynamics, where 2 peptides showed the highest stability regarding to the RMSD value. These peptides were obtained from the proteins calreticulin and HSP90. The cytokine analysis evidenced macrophage activation by the releasing of TNF. CONCLUSION: Two peptides were identified from calreticulin and HSP90; proteins induced by PDT in MDA-MB-231 cells. Both epitopes showed immunogenic potential as a peptide-based vaccine for triple-negative breast cancer.


Subject(s)
Breast Neoplasms , Photochemotherapy , Triple Negative Breast Neoplasms , Vaccines , Humans , Female , Photosensitizing Agents , Photochemotherapy/methods , Calreticulin/metabolism , Calreticulin/therapeutic use , Epitopes/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Chromatography, Liquid , Tandem Mass Spectrometry , Vaccines/therapeutic use , Cytokines/metabolism , Cell Line, Tumor
15.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948022

ABSTRACT

A semi-exhaustive approach and a heuristic search algorithm use a fragment-based drug design (FBDD) strategy for designing new inhibitors in an in silico process. A deconstruction reconstruction process uses a set of known Hsp90 ligands for generating new ones. The deconstruction process consists of cutting off a known ligand in fragments. The reconstruction process consists of coupling fragments to develop a new set of ligands. For evaluating the approaches, we compare the binding energy of the new ligands with the known ligands.


Subject(s)
Drug Design/methods , HSP90 Heat-Shock Proteins/chemistry , Peptide Fragments/chemistry , Algorithms , Computer Simulation , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Heuristics , Humans , Ligands , Peptide Fragments/pharmacology , Structure-Activity Relationship
16.
Electron. j. biotechnol ; Electron. j. biotechnol;53: 61-70, Sep.2021. ilus, tab
Article in English | LILACS | ID: biblio-1451290

ABSTRACT

BACKGROUND Heat shock proteins (HSPs) play important roles in the responses to different environmental stresses. In this study, the genomic and proteomic characteristics of three HSPs (HSP70, HSP90-a and HSP90-b) in five even-toed ungulates (sheep, goats, water buffalo, Zebu cattle and cattle) were analyzed using Multiple sequence alignment, SWISS modeling and phylogenetics analysis tools. RESULTS The bioinformatic analysis revealed that the HSP70 gene in cattle, Zebu cattle, and goat is located on chromosome 23, and is intronless, while in water buffalo and sheep it is located on chromosomes 2 and 20, respectively, and contains two exons linked by one intron. The HSP90-a gene is located on chromosome 21 in cattle, Zebu cattle, and goat, while in water buffalo and sheep it is located on chromosomes 20 and 18, respectively. The HSP90-b gene is located on the same chromosome as the HSP70 gene and contains 12 exons interspersed by 11 introns in all studied animals. In silico Expasy translate tool analysis revealed that HSP70, HSP90-a and HSP90-b encode 641, 733, and 724 amino acids, respectively. The data revealed that goat HSP70 protein has seven variable amino acid residues, while in both sheep and cattle only one such amino acid was detected. CONCLUSIONS This study will be supportive in providing new insights into HSPs for adaptive machinery in these studied animals and selection of target genes for molecular adaptation of livestock


Subject(s)
Animals , HSP90 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Buffaloes/genetics , Cattle/genetics , Goats/genetics , Sheep/genetics , Genome , HSP90 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism
17.
Curr Issues Mol Biol ; 43(2): 887-899, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34449539

ABSTRACT

BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory disease characterized by airflow obstruction, commonly present in smokers and subjects exposed to noxious particles product of biomass-burning smoke (BBS). Several association studies have identified single-nucleotide polymorphisms (SNP) in coding genes related to the heat shock proteins family-genes that codify the heat shock proteins (Hsp). Hsp accomplishes critical roles in regulating immune response, antigen-processing, eliminating protein aggregates and co-activating receptors. The presence of SNPs in these genes can lead to alterations in immune responses. We aimed to evaluate the association of SNPs in the HSP90 gene complex and COPD. METHODS: We enrolled 1549 participants, divided into two comparison groups; 919 tobacco-smoking subjects (cases COPD-TS n = 294 and, controls SWOC n = 625) and 630 chronic exposed to BBS (cases COPD-BBS n = 186 and controls BBES n = 444). We genotyped 2 SNPs: the rs13296 in HSP90AB1 and rs2070908 in HSP90B1. RESULTS: Through the dominant model (GC + CC), the rs2070908 is associated with decreased risk (p < 0.01, OR = 0.6) to suffer COPD among chronic exposed BBS subjects. We found an association between rs13296 GG genotype and lower risk (p = 0.01, OR = 0.22) to suffer severe COPD-TS forms in the severity analysis. CONCLUSIONS: single-nucleotide variants in the HSP90AB1 and HSP90B1 genes are associated with decreased COPD risk in subjects exposed to BBS and the most severe forms of COPD in tobacco-smoking subjects.


Subject(s)
Biomass , HSP90 Heat-Shock Proteins/genetics , Lung/metabolism , Membrane Glycoproteins/genetics , Pulmonary Disease, Chronic Obstructive/genetics , Smoke/adverse effects , Tobacco Smoking/adverse effects , Aged , Case-Control Studies , Female , Humans , Lung/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology
18.
Cancers (Basel) ; 13(14)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34298835

ABSTRACT

Cancer therapy may be improved by the simultaneous interference of two or more oncogenic pathways contributing to tumor progression and aggressiveness, such as EGFR and p53. Tumor cells expressing gain-of-function (GOF) mutants of p53 (mutp53) are usually resistant to EGFR inhibitors and display invasive migration and AKT-mediated survival associated with enhanced EGFR recycling. D-Propranolol (D-Prop), the non-beta blocker enantiomer of propranolol, was previously shown to induce EGFR internalization through a PKA inhibitory pathway that blocks the recycling of the receptor. Here, we first show that D-Prop decreases the levels of EGFR at the surface of GOF mutp53 cells, relocating the receptor towards recycling endosomes, both in the absence of ligand and during stimulation with high concentrations of EGF or TGF-α. D-Prop also inactivates AKT signaling and reduces the invasive migration and viability of these mutp53 cells. Unexpectedly, mutp53 protein, which is stabilized by interaction with the chaperone HSP90 and mediates cell oncogenic addiction, becomes destabilized after D-Prop treatment. HSP90 phosphorylation by PKA and its interaction with mutp53 are decreased by D-Prop, releasing mutp53 towards proteasomal degradation. Furthermore, a single daily dose of D-Prop reproduces most of these effects in xenografts of aggressive gallbladder cancerous G-415 cells expressing GOF R282W mutp53, resulting in reduced tumor growth and extended mice survival. D-Prop then emerges as an old drug endowed with a novel therapeutic potential against EGFR- and mutp53-driven tumor traits that are common to a large variety of cancers.

19.
Microorganisms ; 9(5)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069389

ABSTRACT

The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.

20.
Biochimie ; 187: 131-143, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34082040

ABSTRACT

SGTs (small glutamine-rich TPR-containing proteins) are dimeric proteins that belong to the class of co-chaperones characterized by the presence of TPR domains (containing tetratricopeptide repeats). Human (SGTA) and yeast (Sgt2) SGTs are characterized by three distinct domains: an N-terminal dimerization domain, a central TPR-domain important for binding to other proteins (chaperones included) and a C-terminal domain involved in hydrophobic interactions. Both these SGTs are involved in the cellular PQC (protein quality control) system, as they interact with chaperones and have functions that aid stress recovery. However, there are differences between them, such as structural features and binding specificities, that could be better understood if other orthologous proteins were studied. Therefore, we produced and characterized a putative SGT protein, designated AaSGT, from the mosquito Aedes aegypti, which is a vector of several diseases, such as dengue and Zika. The protein was produced as a folded dimer which was stable up to 40 °C and was capable of binding to AaHsp90 and fully protecting a model protein, α-synuclein, from aggregation. The conformation of AaSGT was investigated by biophysical tools and small angle X-ray scattering, which showed that the protein had an elongated conformation and that its C-terminal domain was mainly disordered. The results with a C-terminal deletion mutant supported these observations. Altogether, these results are consistent with those from other functional SGT proteins and add to the understanding of the PQC system in Aedes aegypti, an important aim that may help to develop inhibitory strategies against this vector of neglected diseases.


Subject(s)
Aedes/chemistry , Insect Proteins/chemistry , Molecular Chaperones/chemistry , Protein Multimerization , Aedes/genetics , Aedes/metabolism , Animals , Insect Proteins/genetics , Insect Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL