Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Am J Physiol Cell Physiol ; 325(1): C344-C361, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37125773

ABSTRACT

Kidney stones (KSs) are very common, excruciating, and associated with tremendous healthcare cost, chronic kidney disease (CKD), and kidney failure (KF). Most KSs are composed of calcium oxalate and small increases in urinary oxalate concentration significantly enhance the stone risk. Oxalate also potentially contributes to CKD progression, kidney disease-associated cardiovascular diseases, and poor renal allograft survival. This emphasizes the urgent need for plasma and urinary oxalate lowering therapies, which can be achieved by enhancing enteric oxalate secretion. We previously identified Oxalobacter formigenes (O. formigenes)-derived factors secreted in its culture-conditioned medium (CM), which stimulate oxalate transport by human intestinal Caco2-BBE (C2) cells and reduce urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. Given their remarkable therapeutic potential, we now identified Sel1-like proteins as the major O. formigenes-derived secreted factors using mass spectrometry and functional assays. Crystal structures for six proteins were determined to confirm structures and better understand functions. OxBSel1-14-derived small peptides P8 and P9 were identified as the major factors, with P8 + 9 closely recapitulating the CM's effects, acting through the oxalate transporters SLC26A2 and SLC26A6 and PKA activation. Besides C2 cells, P8 + 9 also stimulate oxalate transport by human ileal and colonic organoids, confirming that they work in human tissues. In conclusion, P8 and P9 peptides are identified as the major O. formigenes-derived secreted factors and they have significant therapeutic potential for hyperoxalemia, hyperoxaluria, and related disorders, impacting the outcomes of patients suffering from KSs, enteric hyperoxaluria, primary hyperoxaluria, CKD, KF, and renal transplant recipients.NEW & NOTEWORTHY We previously identified Oxalobacter formigenes-derived secreted factors stimulating oxalate transport by human intestinal epithelial cells in vitro and reducing urinary oxalate excretion in hyperoxaluric mice by enhancing colonic oxalate secretion. We now identified Sel1-like proteins and small peptides as the major secreted factors and they have significant therapeutic potential for hyperoxalemia and hyperoxaluria, impacting the outcomes of patients suffering from kidney stones, primary and secondary hyperoxaluria, chronic kidney disease, kidney failure, and renal transplant recipients.


Subject(s)
Hyperoxaluria , Kidney Calculi , Kidney Transplantation , Renal Insufficiency, Chronic , Renal Insufficiency , Humans , Mice , Animals , Oxalobacter formigenes/metabolism , Caco-2 Cells , Oxalates/metabolism , Hyperoxaluria/metabolism , Kidney Calculi/metabolism , Epithelial Cells/metabolism , Peptides/metabolism , Renal Insufficiency/metabolism , Renal Insufficiency, Chronic/metabolism
2.
Kidney Blood Press Res ; 46(3): 377-386, 2021.
Article in English | MEDLINE | ID: mdl-34044409

ABSTRACT

INTRODUCTION: Cardiovascular disease is the most common cause of morbidity and mortality in patients with ESRD. In addition to phosphate overload, oxalate, a common uremic toxin, is also involved in vascular calcification in patients with ESRD. The present study investigated the role and mechanism of hyperoxalemia in vascular calcification in mice with uremia. METHODS: A uremic atherosclerosis (UA) model was established by left renal excision and right renal electrocoagulation in apoE-/- mice to investigate the relationship between oxalate loading and vascular calcification. After 12 weeks, serum and vascular levels of oxalate, vascular calcification, inflammatory factors (TNF-α and IL-6), oxidative stress markers (malondialdehyde [MDA], and advanced oxidation protein products [AOPP]) were assessed in UA mice. The oral oxalate-degrading microbe Oxalobacter formigenes (O. formigenes) was used to evaluate the effect of a reduction in oxalate levels on vascular calcification. The mechanism underlying the effect of oxalate loading on vascular calcification was assessed in cultured human aortic endothelial cells (HAECs) and human aortic smooth muscle cells (HASMCs). RESULTS: Serum oxalate levels were significantly increased in UA mice. Compared to the control mice, UA mice developed more areas of aortic calcification and showed significant increases in aortic oxalate levels and serum levels of oxidative stress markers and inflammatory factors. The correlation analysis showed that serum oxalate levels were positively correlated with the vascular oxalate levels and serum MDA, AOPP, and TNF-α levels, and negatively correlated with superoxide dismutase activity. The O. formigenes intervention decreased serum and vascular oxalate levels, while did not improve vascular calcification significantly. In addition, systemic inflammation and oxidative stress were also improved in the O. formigenes group. In vitro, high concentrations of oxalate dose-dependently increased oxidative stress and inflammatory factor expression in HAECs, but not in HASMCs. CONCLUSIONS: Our results indicated that hyperoxalemia led to the systemic inflammation and the activation of oxidative stress. The reduction in oxalate levels by O. formigenes might be a promising treatment for the prevention of oxalate deposition in calcified areas of patients with ESRD.


Subject(s)
Endothelial Cells/pathology , Oxalates/metabolism , Oxidative Stress , Renal Insufficiency, Chronic/pathology , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cell Line , Disease Models, Animal , Endothelial Cells/metabolism , Humans , Male , Mice , Renal Insufficiency, Chronic/metabolism , Uremia/metabolism , Uremia/pathology , Vascular Calcification/metabolism , Vascular Calcification/pathology
3.
G Ital Nefrol ; 38(2)2021 Apr 14.
Article in Italian | MEDLINE | ID: mdl-33852222

ABSTRACT

Primary hyperoxaluria type 1 is a rare genetic disease; the onset of symptoms ranges from childhood to the sixth decade of life and the disease may go unrecognized for several years. There is an urgent need for drugs able to inhibit the liver production of oxalate and to prevent the disease progression; lumasiran, an innovative molecule based on RNAi interference, is one of the most promising drugs. A group of leading Italian experts on this disease met to respond to some unmet medical needs (early diagnosis, availability of genetic tests and dosage of plasma oxalate, timing of liver transplantation, need for etiologic treatment), based on the analysis of the main scientific evidence and their personal experience. Children showing the characteristic symptoms of the disease usually undergo a metabolic screening and obtain an early diagnosis, while the experience is very limited in adults and the diagnosis difficult. It is therefore essential to increase the knowledge around this disease and the importance of metabolic and genetic screening to define a checklist of shared clinical and laboratory criteria and to establish a multidisciplinary management of potential patients. Oxalate is the cause of the disease: it is crucial to reduce both oxaluria and oxalemia through appropriate therapeutic strategies, able to prevent and/or reduce renal and systemic complications of primary type 1 hyperoxaluria. Lumasiran allows to significantly reduce the levels of oxalate both in blood and in urine, halting the course of the disease and preventing serious renal and systemic complications, if the therapy is started at an early stage of the disease.


Subject(s)
Hyperoxaluria, Primary , Hyperoxaluria , Child , Humans , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/therapy , Italy , Kidney
4.
Ann Transl Med ; 5(2): 36, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28217701

ABSTRACT

This perspective focuses on how the gut microbiota can impact urinary oxalate excretion in the context of hyperoxaluria, a major risk factor in kidney stone disease. In the genetic disease of Primary Hyperoxaluria Type 1 (PH1), an increased endogenous production of oxalate, due to a deficiency of the liver enzyme alanine-glyoxylate aminotransferase (AGT), results in hyperoxaluria and oxalate kidney stones. The constant elevation in urinary oxalate in PH1 patients ultimately leads to tissue deposition of oxalate, renal failure and death and the only known cure for PH1 is a liver or liver-kidney transplant. The potential impact of a probiotic/therapeutic approach may be clinically significant in PH1 and could also extend to a much larger population of idiopathic oxalate stone formers who comprise ~12% of Americans, individuals with enteric hyperoxaluria, and an emerging population of hyperoxaluric patients who have undergone bariatric surgery and develop kidney stone disease as a consequence.

SELECTION OF CITATIONS
SEARCH DETAIL