Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 988
Filter
1.
Redox Biol ; 76: 103330, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39244793

ABSTRACT

The ability of air pollution to induce acute exacerbation of asthma is well documented. However, the ability of ozone (O3), the most reactive gaseous component of air pollution, to function as a modulator during sensitization is not well established. C57BL/6 J male mice were intranasally sensitized to house dust mite (HDM) (40 µg/kg) for 3 weeks on alternate days in parallel with once-a-week O3 exposure (1 ppm). Mice were euthanized 24 h following the last HDM challenge. Lung lavage, histology, lung function (both forced oscillation and forced expiration-based), immune cell profiling, inflammation (pulmonary and systemic), and immunoglobulin production were assessed. Compared to HDM alone, HDM + O3 leads to a significant increase in peribronchial inflammation (p < 0.01), perivascular inflammation (p < 0.001) and methacholine-provoked large airway hyperreactivity (p < 0.05). Serum total IgG and IgE and HDM-specific IgG1 were 3-5 times greater in HDM + O3 co-exposure compared to PBS and O3-exposed groups. An increase in activated/mature lung total and monocyte-derived dendritic cells (p < 0.05) as well as T-activated, and T memory lymphocyte subset numbers (p < 0.05) were noted in the HDM + O3 group compared to HDM alone group. Concurrent O3 inhalation and HDM sensitization also caused significantly greater (p < 0.05) lung tissue interleukin-17 pathway gene expression and mediator levels in the serum. Redox imbalance was manifested by impaired lung antioxidant defense and increased oxidants. O3 inhalation during allergic sensitization coalesces in generating a significantly worse TH17 asthmatic phenotype.

2.
Respir Res ; 25(1): 295, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095798

ABSTRACT

Shortening of airway smooth muscle and bronchoconstriction are pathognomonic for asthma. Airway shortening occurs through calcium-dependent activation of myosin light chain kinase, and RhoA-dependent calcium sensitization, which inhibits myosin light chain phosphatase. The mechanism through which pro-contractile stimuli activate calcium sensitization is poorly understood. Our review of the literature suggests that pro-contractile G protein coupled receptors likely signal through G12/13 to activate RhoA and mediate calcium sensitization. This hypothesis is consistent with the effects of pro-contractile agonists on RhoA and Rho kinase activation, actin polymerization and myosin light chain phosphorylation. Recognizing the likely role of G12/13 signaling in the pathophysiology of asthma rationalizes the effects of pro-contractile stimuli on airway hyperresponsiveness, immune activation and airway remodeling, and suggests new approaches for asthma treatment.


Subject(s)
Asthma , Signal Transduction , Asthma/metabolism , Asthma/physiopathology , Asthma/drug therapy , Humans , Signal Transduction/physiology , Animals , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , Muscle, Smooth/metabolism , Muscle, Smooth/physiopathology , Muscle, Smooth/drug effects , Airway Remodeling/physiology
4.
Sci Total Environ ; 952: 175880, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39216756

ABSTRACT

Occupational asthma (OA) is a common occupational pulmonary disease that is frequently underdiagnosed and underreported. The complexity of diagnosing and treating OA creates a significant social and economic burden, making it an important public health issue. In addition to avoiding allergens, patients with OA require pharmacotherapy; however, new therapeutic targets and strategies need further investigation. Autophagy may be a promising intervention target, but there is a lack of relevant studies summarizing the role of autophagy in OA. In this review consolidates the current understanding of OA, detailing principal and novel agents responsible for its onset. Additionally, we summarize the mechanisms of autophagy in HMW and LMW agents induced OA, revealing that occupational allergens can induce autophagy disorders in lung epithelial cells, smooth muscle cells, and dendritic cells, ultimately leading to OA through involving inflammatory responses, oxidative stress, and cell death. Finally, we discuss the prospects of targeting autophagy as an effective strategy for managing OA and even steroid-resistant asthma, encompassing autophagy interventions focused on organoids, organ-on-a-chip systems, nanomaterials vehicle, and nanobubbles; developing combined exposure models, and the role of non-classical autophagy in occupational asthma. In briefly, this review summarizes the role of autophagy in occupational asthma, offers a theoretical foundation for OA interventions based on autophagy, and identifies directions and challenges for future research.

5.
Respir Res ; 25(1): 314, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160577

ABSTRACT

BACKGROUND: While asthma exacerbations remain a major challenge in patient management, few animal models exist to explore the underlying mechanisms. Here, we established an animal model of asthma that can be used to study pathophysiological mechanisms and therapeutic strategies on asthma exacerbation. METHODS: Female BALB/c mice were sensitized and exposed to PBS or Dermatophagoides pteronyssinus (DerP) extract for 11 weeks. Asthmatic phenotype was assessed through lung inflammation, bronchial hyperresponsiveness and bronchial smooth muscle remodeling. Asthmatic and control mice were exposed once or three times to poly(I:C) to simulate virus-induced inflammation. RESULTS: Fourteen days after exposure to DerP, asthmatic mice showed resolution of inflammation with sustained bronchial hyperresponsiveness and bronchial smooth muscle remodeling compared to control. At this stage, when mice were subjected to a single exposure to poly(I:C), control and asthmatic mice were characterized by a significant increase in neutrophilic inflammation and bronchial hyperresponsiveness. When mice were repeatedly exposed to poly(I:C), control mice showed a significant decrease in neutrophilic inflammation and bronchial hyperresponsiveness, while asthmatic mice experienced worsening of these outcomes. CONCLUSIONS: This observational study report an asthmatic mouse model that can undergo exacerbation after repeated exposure to poly(I:C). Our findings on pulmonary adaptation in control mice may also pave the way for further research into the mechanism of adaptation that may be impaired in asthma and raise the question of whether asthma exacerbation may be a loss of adaptation.


Subject(s)
Asthma , Lung , Mice, Inbred BALB C , Poly I-C , Animals , Asthma/physiopathology , Female , Poly I-C/toxicity , Mice , Lung/physiopathology , Lung/drug effects , Adaptation, Physiological/physiology , Disease Models, Animal , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/chemically induced , Airway Remodeling/drug effects , Airway Remodeling/physiology
6.
J Pediatr ; : 114250, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181318

ABSTRACT

OBJECTIVE: To evaluate the safety of an abbreviated methacholine challenge test (MCT) protocol in children. STUDY DESIGN: This prospective, observational study enrolled children aged 6 through 18 years referred for the MCT. The abbreviated protocol was initiated with a methacholine dose of 0.03 mg/ml and escalated in fourfold increments, unless the forced expiratory volume at 1 second (FEV1) decline exceeded 10%, at which point the next dose was only doubled. The safety of this abbreviated approach was assessed by monitoring adverse events, and specifically, decreases in FEV1 over 40%, hypoxemia, or uncontrollable cough. The number of methacholine doses and test duration were recorded and compared with estimated outcomes derived from the full-length MCT protocol. RESULTS: One hundred and twelve participants, aged 13.7 years (±3.3), successfully completed the protocol. Fifty-seven (51%) presented a positive MCT response. No significant clinical adverse events were observed. Of all participants, 2.7% exhibited an exaggerated response, in line with previously reported findings for the full-length protocol. The abbreviated approach resulted in an estimated average time-savings of 18:19 minutes per participant, thus reducing test length by 22:47 minutes for a negative MCT and by 14:34 minutes for a positive outcome. CONCLUSIONS: This abbreviated MCT protocol is safe for children and effectively shortens the duration of the MCT.

7.
Respir Res ; 25(1): 273, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997751

ABSTRACT

BACKGROUND: Fibroblast differentiation to a myofibroblast phenotype is a feature of airway remodeling in asthma. Lung fibroblasts express the integrin receptor α4ß7 and fibronectin induces myofibroblast differentiation via this receptor. OBJECTIVES: To investigate the role of the ß7 integrin receptor subunit and α4ß7 integrin complex in airway remodeling and airway hyperresponsiveness (AHR) in a murine model of chronic allergen exposure. METHODS: C57BL/6 wild type (WT) and ß7 integrin null mice (ß7 -/-) were sensitized (days 1,10) and challenged with ovalbumin (OVA) three times a week for one or 4 weeks. Similar experiments were performed with WT mice in the presence or absence of α4ß7 blocking antibodies. Bronchoalveolar (BAL) cell counts, AHR, histological evaluation, soluble collagen content, Transforming growth factor-ß (TGFß) and Interleukin-13 (IL13) were measured. Phenotype of fibroblasts cultured from WT and ß7 -/- saline (SAL) and OVA treated mice was evaluated. RESULTS: Eosinophil numbers were similar in WT vs ß7-/- mice. Prolonged OVA exposure in ß7-/- mice was associated with reduced AHR, lung collagen content, peribronchial smooth muscle, lung tissue TGFß and IL13 expression as compared to WT. Similar findings were observed in WT mice treated with α4ß7 blocking antibodies. Fibroblast migration was enhanced in response to OVA in WT but not ß7 -/- fibroblasts. α-SMA and fibronectin expression were reduced in ß7-/- fibroblasts relative to WT. CONCLUSIONS: The ß7 integrin subunit and the α4ß7 integrin complex modulate AHR and airway remodeling in a murine model of allergen exposure. This effect is, at least in part, explained by inhibition of fibroblast activation and is independent of eosinophilic inflammation.


Subject(s)
Airway Remodeling , Integrin beta Chains , Mice, Inbred C57BL , Mice, Knockout , Ovalbumin , Animals , Airway Remodeling/physiology , Airway Remodeling/immunology , Mice , Ovalbumin/toxicity , Integrin beta Chains/metabolism , Integrin beta Chains/genetics , Allergens/immunology , Allergens/toxicity , Cells, Cultured , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/metabolism , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/pathology , Lung/metabolism , Lung/immunology , Lung/pathology , Disease Models, Animal , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/immunology , Transforming Growth Factor beta/metabolism
8.
Toxicol Appl Pharmacol ; 490: 117035, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019094

ABSTRACT

Exposure to particulate matter (PM10) can induce respiratory diseases that are closely related to bronchial hyperresponsiveness. However, the involved mechanism remains to be fully elucidated. This study aimed to demonstrate the effects of PM10 on the acetylcholine muscarinic 3 receptor (CHRM3) expression and the role of the ERK1/2 pathway in rat bronchial smooth muscle. A whole-body PM10 exposure system was used to stimulate bronchial hyperresponsiveness in rats for 2 and 4 months, accompanied by MEK1/2 inhibitor U0126 injection. The whole-body plethysmography system and myography were used to detect the pulmonary and bronchoconstrictor function, respectively. The mRNA and protein levels were determined by Western blotting, qPCR, and immunofluorescence. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokines. Compared with the filtered air group, 4 months of PM10 exposure significantly increased CHRM3-mediated pulmonary function and bronchial constriction, elevated CHRM3 mRNA and protein expression levels on bronchial smooth muscle, then induced bronchial hyperreactivity. Additionally, 4 months of PM10 exposure caused an increase in ERK1/2 phosphorylation and increased the secretion of inflammatory factors in bronchoalveolar lavage fluid. Treatment with the MEK1/2 inhibitor, U0126 inhibited the PM10 exposure-induced phosphorylation of the ERK1/2 pathway, thereby reducing the PM10 exposure-induced upregulation of CHRM3 in bronchial smooth muscle and CHRM3-mediated bronchoconstriction. U0126 could rescue PM10 exposure-induced pathological changes in the bronchus. In conclusion, PM10 exposure can induce bronchial hyperresponsiveness in rats by upregulating CHRM3, and the ERK1/2 pathway may be involved in this process. These findings could reveal a potential therapeutic target for air pollution induced respiratory diseases.


Subject(s)
Bronchial Hyperreactivity , Particulate Matter , Receptor, Muscarinic M3 , Animals , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/physiopathology , Bronchial Hyperreactivity/metabolism , Male , Particulate Matter/toxicity , Receptor, Muscarinic M3/metabolism , Receptor, Muscarinic M3/genetics , Rats , Up-Regulation/drug effects , Bronchi/drug effects , Bronchi/metabolism , Bronchi/pathology , Rats, Sprague-Dawley , MAP Kinase Signaling System/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Bronchoconstriction/drug effects , Cytokines/metabolism , Cytokines/genetics , Butadienes , Nitriles
9.
Cell Biochem Biophys ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995530

ABSTRACT

Aconitum heterophyllum Wall ex Royle. (Ranunculaceae) is a traditional medicinal herb that has shown extensive pharmacological potential to treat cough, diarrhea, and infectious diseases but no scientific evidence is available to validate its antiasthmatic potential. In this study, we have investigated the tracheal relaxation and antiasthmatic activity of the selected bioactive fraction of A. heterophyllum. Chemical profiling of the most effective fraction obtained via bioassay-guided fractionation was done using LC-MS (Liquid chromatography-mass spectrometry, a technique utilized in the identification, separation, and quantification of known and unknown compounds). Molecular docking analysis of characterized constituents was performed to recognize the binding receptors, followed by an evaluation of the tracheal relaxation ability of active fraction. An acute oral toxicity study of the most effective fraction was done using OECD guidelines 423. Further, the therapeutic efficacy of the fraction was validated in asthma using a guinea pig model of ovalbumin (OVA) induced allergic asthma. The bio-guided activity revealed that hydro-methanolic extract of A. heterophyllum roots (F-1) was the most active fraction. LC-MS analysis of F-1 showed the presence of six major bioactive compounds in F-1. Molecular docking studies revealed strong binding affinities of identified constituents with histaminic receptor (H1) and muscarinic receptor (M3). The ex vivo study demonstrated smooth muscle relaxant activity of F-1 via dysregulating diverse signal transduction pathways viz. histaminic and muscarinic receptors antagonism (non-competitive), stimulation of ß2-adrenergic receptor pathway, and soluble guanylyl cyclase activation. The findings of acute oral toxicity studies revealed that F-1 had no toxicity up to the dose of 2000 mg/Kg. The anti-asthmatic therapeutic efficacy of F-1 was further confirmed by the amelioration of respiratory hyperresponsiveness in asthmatic guinea pigs. This is the first evidence-based study showing the antiasthmatic therapeutic potential of the traditionally used herb A. heterophyllum through, computational and animal studies.

10.
Immun Inflamm Dis ; 12(6): e1333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38934407

ABSTRACT

BACKGROUND: Particulate ß-glucans (WGP) are natural compounds with regulatory roles in various biological processes, including tumorigenesis and inflammatory diseases such as allergic asthma. However, their impact on mast cells (MCs), contributors to airway hyperresponsiveness (AHR) and inflammation in asthma mice, remains unknown. METHODS: C57BL/6 mice underwent repeated OVA sensitization without alum, followed by Ovalbumin (OVA) challenge. Mice received daily oral administration of WGP (OAW) at doses of 50 or 150 mg/kg before sensitization and challenge. We assessed airway function, lung histopathology, and pulmonary inflammatory cell composition in the airways, as well as proinflammatory cytokines and chemokines in the bronchoalveolar lavage fluid (BALF). RESULTS: The 150 mg/kg OAW treatment mitigated OVA-induced AHR and airway inflammation, evidenced by reduced airway reactivity to aerosolized methacholine (Mch), diminished inflammatory cell infiltration, and goblet cell hyperplasia in lung tissues. Additionally, OAW hindered the recruitment of inflammatory cells, including MCs and eosinophils, in lung tissues and BALF. OAW treatment attenuated proinflammatory tumor necrosis factor (TNF)-α and IL-6 levels in BALF. Notably, OAW significantly downregulated the expression of chemokines CCL3, CCL5, CCL20, CCL22, CXCL9, and CXCL10 in BALF. CONCLUSION: These results highlight OAW's robust anti-inflammatory properties, suggesting potential benefits in treating MC-dependent AHR and allergic inflammation by influencing inflammatory cell infiltration and regulating proinflammatory cytokines and chemokines in the airways.


Subject(s)
Asthma , Disease Models, Animal , Mast Cells , Mice, Inbred C57BL , beta-Glucans , Animals , Asthma/immunology , Asthma/drug therapy , Asthma/pathology , Mast Cells/immunology , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Administration, Oral , beta-Glucans/pharmacology , beta-Glucans/administration & dosage , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/immunology , Ovalbumin/immunology , Respiratory Hypersensitivity/drug therapy , Respiratory Hypersensitivity/immunology , Bronchoalveolar Lavage Fluid/immunology , Lung/immunology , Lung/pathology , Lung/drug effects
11.
Physiol Rep ; 12(13): e16122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38942729

ABSTRACT

Supplemental O2 (hyperoxia) is a critical intervention for premature infants (<34 weeks) but consequently is associated with development of bronchial airway hyperreactivity (AHR) and asthma. Clinical practice shifted toward the use of moderate hyperoxia (<60% O2), but risk for subsequent airway disease remains. In mouse models of moderate hyperoxia, neonatal mice have increased AHR with effects on airway smooth muscle (ASM), a cell type involved in airway tone, bronchodilation, and remodeling. Understanding mechanisms by which moderate O2 during the perinatal period initiates sustained airway changes is critical to drive therapeutic advancements toward treating airway diseases. We propose that cellular clock factor BMAL1 is functionally important in developing mouse airways. In adult mice, cellular clocks target pathways highly relevant to asthma pathophysiology and Bmal1 deletion increases inflammatory response, worsens lung function, and impacts survival outcomes. Our understanding of BMAL1 in the developing lung is limited, but our previous findings show functional relevance of clocks in human fetal ASM exposed to O2. Here, we characterize Bmal1 in our established mouse neonatal hyperoxia model. Our data show that Bmal1 KO deleteriously impacts the developing lung in the context of O2 and these data highlight the importance of neonatal sex in understanding airway disease.


Subject(s)
ARNTL Transcription Factors , Animals, Newborn , Hyperoxia , Animals , Hyperoxia/metabolism , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Mice , Female , Male , Lung/metabolism , Mice, Inbred C57BL , Mice, Knockout , Sex Characteristics
12.
Hum Cell ; 37(5): 1316-1324, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38913146

ABSTRACT

Chronic cough is a common disorder lasting more than 8 weeks and affecting all age groups. The evidence supporting the role of neutrophils in chronic cough pathology is based on many patients with chronic cough developing airway neutrophilia. How neutrophils influence the development of chronic cough is unknown. However, they are likely involved in multiple aspects of cough etiology, including promoting airway inflammation, airway remodeling, hyper-responsiveness, local neurogenic inflammation, and other possible mechanisms. Neutrophilic airway inflammation is also associated with refractory cough, poor control of underlying diseases (e.g., asthma), and insensitivity to cough suppressant therapy. The potential for targeting neutrophils in chronic cough needs exploration, including developing new drugs targeting one or more neutrophil-mediated pathways or altering the neutrophil phenotype to alleviate chronic cough. How the airway microbiome differs, plays a role, and interacts with neutrophils in different cough etiologies is poorly understood. Future studies should focus on understanding the relationship between the airway microbiome and neutrophils.


Subject(s)
Chronic Cough , Neutrophils , Humans , Airway Remodeling/immunology , Asthma/complications , Asthma/immunology , Chronic Cough/immunology , Inflammation/immunology , Microbiota , Neutrophils/immunology
13.
Curr Issues Mol Biol ; 46(5): 4271-4285, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38785528

ABSTRACT

Galectins are a group of ß-galactoside-binding proteins with several roles in immune response, cellular adhesion, and inflammation development. Current evidence suggest that these proteins could play a crucial role in many respiratory diseases such as pulmonary fibrosis, lung cancer, and respiratory infections. From this standpoint, an increasing body of evidence have recognized galectins as potential biomarkers involved in several aspects of asthma pathophysiology. Among them, galectin-3 (Gal-3), galectin-9 (Gal-9), and galectin-10 (Gal-10) are the most extensively studied in human and animal asthma models. These galectins can affect T helper 2 (Th2) and non-Th2 inflammation, mucus production, airway responsiveness, and bronchial remodeling. Nevertheless, while higher Gal-3 and Gal-9 concentrations are associated with a stronger degree of Th-2 phlogosis, Gal-10, which forms Charcot-Leyden Crystals (CLCs), correlates with sputum eosinophilic count, interleukin-5 (IL-5) production, and immunoglobulin E (IgE) secretion. Finally, several galectins have shown potential in clinical response monitoring after inhaled corticosteroids (ICS) and biologic therapies, confirming their potential role as reliable biomarkers in patients with asthma.

14.
J Asthma ; : 1-10, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38747533

ABSTRACT

BACKGROUND: Small airway dysfunction (SAD) is increasingly recognized as an important feature of pediatric asthma yet typically relies on spirometry-derived FEF25-75 to detect its presence. Multiple breath washout (MBW) and oscillometry potentially offer improved sensitivity for SAD detection, but their utility in comparison to FEF25-75, and correlations with clinical outcomes remains unclear for school-age asthma. We investigated SAD occurrence using these techniques, between-test correlation and links to clinical outcomes in 57 asthmatic children aged 8-18 years. METHODS: MBW and spirometry abnormality were defined as z-scores above/below ± 1.96, generating MBW reference equations from contemporaneous controls (n = 69). Abnormal oscillometry was defined as > 97.5th percentile, also from contemporaneous controls (n = 146). Individuals with abnormal FEF25-75, MBW, or oscillometry were considered to have SAD. RESULTS: Using these limits of normal, SAD was present on oscillometry in 63% (resistance at 5-20 Hz; R5-R20; >97.5th percentile), on MBW in 54% (Scond; z-scores> +1.96) and in spirometry FEF25-75 in 44% of participants (z-scores< -1.96). SAD, defined by oscillometry and/or MBW abnormality, occurred in 77%. Among those with abnormal R5-R20, Scond was abnormal in 71%. Correlations indicated both R5-R20 and Scond were linked to asthma medication burden, baseline FEV1 and reversibility. Additionally, Scond correlated with FENO and magnitude of bronchial hyper-responsiveness. SAD, detected by oscillometry and/or MBW, occurred in almost 80% of school-aged asthmatic children, surpassing FEF25-75 detection rates. CONCLUSIONS: Discordant oscillometry and MBW abnormality suggests they reflect different aspects of SAD, serving as complementary tools. Key asthma clinical features, like reversibility, had stronger correlation with MBW-derived Scond than oscillometry-derived R5-R20.

15.
Mol Cell Endocrinol ; 590: 112273, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38763427

ABSTRACT

High serum estrogen concentrations are associated with asthma development and severity, suggesting a link between estradiol and airway hyperresponsiveness (AHR). 17ß-estradiol (E2) has non-genomic effects via Ca2+ regulatory mechanisms; however, its effect on the plasma membrane Ca2+-ATPases (PMCA1 and 4) and sarcoplasmic reticulum Ca2+-ATPase (SERCA) is unknown. Hence, in the present study, we aim to demonstrate if E2 favors AHR by increasing intracellular Ca2+ concentrations in guinea pig airway smooth muscle (ASM) through a mechanism involving Ca2+-ATPases. In guinea pig ASM, Ca2+ microfluorometry, muscle contraction, and Western blot were evaluated. Then, we performed molecular docking analysis between the estrogens and Ca2+ ATPases. In tracheal rings, E2 produced AHR to carbachol. In guinea pig myocytes, acute exposure to physiological levels of E2 modified the transient Ca2+ peak induced by caffeine to a Ca2+ plateau. The incubation with PMCA inhibitors (lanthanum and carboxyeosin, CE) partially reversed the E2-induced sustained plateau in the caffeine response. In contrast, cyclopiazonic acid (SERCA inhibitor), U-0126 (an inhibitor of ERK 1/2), and choline chloride did not modify the Ca2+ plateau produced by E2. The mitochondrial uniporter activity and the capacitative Ca2+ entry were unaffected by E2. In guinea pig ASM, Western blot analysis demonstrated PMCA1 and PMCA4 expression. The results from the docking modeling demonstrate that E2 binds to both plasma membrane ATPases. In guinea pig tracheal smooth muscle, inhibiting the PMCA with CE, induced hyperresponsiveness to carbachol. 17ß-estradiol produces hyperresponsiveness by inhibiting the PMCA in the ASM and could be one of the mechanisms responsible for the increase in asthmatic crisis in women.


Subject(s)
Calcium , Estradiol , Molecular Docking Simulation , Plasma Membrane Calcium-Transporting ATPases , Animals , Guinea Pigs , Estradiol/pharmacology , Plasma Membrane Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Male , Trachea/drug effects , Trachea/metabolism , Muscle Contraction/drug effects , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Carbachol/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism
16.
Int Immunopharmacol ; 134: 112199, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38713938

ABSTRACT

Asthma is a prevalent chronic respiratory disease, yet understanding its ecology and pathogenesis remains a challenge. Trim27, a ubiquitination ligase belonging to the TRIM (tripartite motif-containing) family, has been implicated in regulating multiple pathophysiological processes such as inflammation, oxidative stress, apoptosis, and cell proliferation. However, the role of Trim27 in asthma has not been investigated. Our study found that Trim27 expression significantly increases in the airway epithelium of asthmatic mice. Knockdown of Trim27 expression effectively relieved ovalbumin (OVA)-induced airway hyperresponsiveness (AHR) and lung tissue histopathological changes. Moreover, Trim27 knockdown exhibited a significant reduction in airway inflammation and oxidative stress in asthmatic mice, and in vitro analysis confirmed the favorable effect of Trim27 deletion on inflammation and oxidative stress in mouse airway epithelial cells. Furthermore, our study revealed that deletion of Trim27 in MLE12 cells significantly decreased NLRP3 inflammasome activation, as evidenced by reduced expression of NLRP3, ASC, and pro-IL-1ß mRNA. This downregulation was reversed when Trim27, but not its mutant lacking ubiquitination ligase activity, was replenished in these cells. Consistent with these findings, protein levels of NLRP3, pro-caspase-1, pro-IL-1ß, cleaved-caspase-1, and cleaved-IL-1ß were higher in Trim27-replenished cells compared to cells expressing Trim27C/A. Functionally, the downregulation of IL-1ß and IL-18 levels induced by Trim27 deletion was rescued by replenishing Trim27. Overall, our findings provide evidence that Trim27 contributes to airway inflammation and oxidative stress in asthmatic mice via NLRP3 inflammasome activation, providing crucial insights into potential therapeutic interventions targeting Trim27 as a way to treat asthma.


Subject(s)
Asthma , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Animals , Asthma/metabolism , Asthma/immunology , Asthma/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/metabolism , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Lung/pathology , Lung/immunology , Lung/metabolism , Cell Line , Female , Disease Models, Animal , Inflammation/metabolism , Humans , Mice, Inbred C57BL , Tripartite Motif Proteins , DNA-Binding Proteins
17.
Ecotoxicol Environ Saf ; 278: 116403, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38710145

ABSTRACT

RATIONALE: Diesel engine exhaust (DEE) is associated with the development and exacerbation of asthma. Studies have shown that DEE can aggravate allergen-induced eosinophilic inflammation in lung. However, it remains not clear that whether DEE alone could initiate non-allergic eosinophilic inflammation and airway hyperresponsiveness (AHR) through innate lymphoid cells (ILCs) pathway. OBJECTIVE: This study aims to investigate the airway inflammation and hyperresponsiveness and its relationship with ILC after DEE exposure. METHOD: Non-sensitized BALB/c mice were exposed in the chamber of diesel exhaust or filtered air for 2, 4, and 6 weeks (4 h/day, 6 days/week). Anti-CD4 mAb or anti-Thy1.2 mAb was administered by intraperitoneal injection to inhibit CD4+T or ILCs respectively. AHR、airway inflammation and ILCs were assessed. RESULT: DEE exposure induced significantly elevated level of neutrophils, eosinophils, collagen content at 4, 6 weeks. Importantly, the airway AHR was only significant in the 4weeks-DEE exposure group. No difference of the functional proportions of Th2 cells was found between exposure group and control group. The proportions of IL-5+ILC2, IL-17+ILC significantly increased in 2, 4weeks-DEE exposure group. After depletion of CD4+T cells, both the proportion of IL-5+ILC2 and IL-17A ILCs was higher in the 4weeks-DEE exposure group which induced AHR, neutrophilic and eosinophilic inflammation accompanied by the IL-5, IL-17A levels. CONCLUSION: Diesel engine exhaust alone can imitate asthmatic characteristics in mice model. Lung-resident ILCs are one of the major effectors cells responsible for a mixed Th2/Th17 response and AHR.


Subject(s)
Air Pollutants , Lymphocytes , Mice, Inbred BALB C , Vehicle Emissions , Animals , Vehicle Emissions/toxicity , Mice , Lymphocytes/drug effects , Lymphocytes/immunology , Air Pollutants/toxicity , Inflammation/chemically induced , Eosinophils/immunology , Eosinophils/drug effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/chemically induced , Female , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Male
18.
Respirology ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720400

ABSTRACT

BACKGROUND AND OBJECTIVE: Lung function reaches a peak/plateau in early adulthood before declining with age. Lower early adult lung function may increase the risk for chronic obstructive pulmonary disease (COPD) in mid-late adult life. Understanding the effects of multiple childhood/adolescent exposures and their potential interactions on plateau lung function would provide insights into the natural history of COPD. METHODS: Longitudinal spirometry data from 688 participants with complete data from a population-based birth cohort (original n = 1037) were used to investigate associations between a wide range of childhood/adolescent exposures and repeated measures of FEV1, FVC and FEV1/FVC during the early-adult plateau phase. Generalized estimating equations were used to accommodate the multiple timepoints per participant. RESULTS: FEV1 reached a peak/plateau between ages 18 and 26 and FVC from 21 to 32 years, whereas FEV1/FVC declined throughout early adulthood. Childhood asthma and airway hyperresponsiveness were associated with lower early adult FEV1 and FEV1/FVC. Smoking by age 18 was associated with lower FEV1/FVC. Higher BMI during early adulthood was associated with lower FEV1 and FVC and lower FEV1/FVC. Physical activity during adolescence was positively associated with FEV1 and FEV1/FVC but this was only statistically significant in men. There was no convincing evidence of interactions between exposures. CONCLUSION: Childhood asthma and airway hyperresponsiveness are associated with lower lung function in early adulthood. Interventions targeting these may reduce the risk of COPD in mid-late adult life. Promotion of physical activity during adolescence, prevention of cigarette smoking and maintenance of a healthy body weight in early adulthood are also priorities.

19.
Int Arch Allergy Immunol ; 185(8): 752-760, 2024.
Article in English | MEDLINE | ID: mdl-38599205

ABSTRACT

INTRODUCTION: Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS: Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS: AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION: CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.


Subject(s)
Cytokines , Mice, Knockout , Ovalbumin , Receptors, Immunologic , Receptors, Prostaglandin , Animals , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Mice , Ovalbumin/immunology , Cytokines/metabolism , Disease Models, Animal , Immunoglobulin E/blood , Immunoglobulin E/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Lung/pathology , Lung/immunology , Asthma/immunology , Asthma/pathology , Asthma/metabolism , Th2 Cells/immunology , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , Eosinophils/immunology , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/etiology , Mast Cells/immunology , Mast Cells/metabolism , Inflammation/immunology , Mice, Inbred C57BL
20.
J Theor Biol ; 588: 111835, 2024 07 07.
Article in English | MEDLINE | ID: mdl-38643962

ABSTRACT

Obesity is a contributing factor to asthma severity; while it has long been understood that obesity is related to greater asthma burden, the mechanisms though which this occurs have not been fully elucidated. One common explanation is that obesity mechanically reduces lung volume through accumulation of adipose tissue external to the thoracic cavity. However, it has been recently demonstrated that there is substantial adipose tissue within the airway wall itself, and that the presence of adipose tissue within the airway wall is related to body mass index. This suggests the possibility of an additional mechanism by which obesity may worsen asthma, namely by altering the behaviour of the airways themselves. To this end, we modify Anafi & Wilson's classic model of the bistable terminal airway to incorporate adipose tissue within the airway wall in order to answer the question of how much adipose tissue would be required in order to drive substantive functional changes. This analysis suggests that adipose tissue within the airway wall on the order of 1%-2% of total airway cross-sectional area could be sufficient to drive meaningful changes, and further that these changes may interact with volume effects to magnify the overall burden.


Subject(s)
Adipose Tissue , Asthma , Models, Biological , Obesity , Adipose Tissue/metabolism , Humans , Asthma/physiopathology , Obesity/physiopathology , Obesity/metabolism , Lung/physiology
SELECTION OF CITATIONS
SEARCH DETAIL