Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Healthc Mater ; 11(4): e2101844, 2022 02.
Article in English | MEDLINE | ID: mdl-34716686

ABSTRACT

Immune cells sense, communicate, and logically integrate a multitude of environmental signals to make important cell-fate decisions and fulfill their effector functions. These processes are initiated and regulated by a diverse array of immune receptors and via their dynamic spatiotemporal organization upon ligand binding. Given the widespread relevance of the immune system to health and disease, there have been significant efforts toward understanding the biophysical principles governing immune receptor signaling and activation, as well as the development of biomaterials which exploit these principles for therapeutic immune engineering. Here, how advances in the field of DNA nanotechnology constitute a growing toolbox for further pursuit of these endeavors is discussed. Key cellular players involved in the induction of immunity against pathogens or diseased cells are first summarized. How the ability to design DNA nanostructures with custom shapes, dynamics, and with site-specific incorporation of diverse guests can be leveraged to manipulate the signaling pathways that regulate these processes is then presented. It is followed by highlighting emerging applications of DNA nanotechnology at the crossroads of immune engineering, such as in vitro reconstitution platforms, vaccines, and adjuvant delivery systems. Finally, outstanding questions that remain for further advancing immune-modulatory DNA nanodevices are outlined.


Subject(s)
Nanostructures , DNA/chemistry , Engineering , Nanostructures/chemistry , Nanotechnology , Signal Transduction
2.
Adv Mater ; 32(22): e2000020, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32319126

ABSTRACT

The formation of an immunological synapse (IS) on recognition of a cancer cell is the main mechanism underlying the natural killer (NK)-cell-mediated killing of tumor cells. Herein, an integrative strategy for cancer therapy against solid tumors is reported, in which alterations in the cleft of IS, following the secretion of acidic granular content, are utilized as a trigger for the delivery of chemotherapeutic drugs. NK cells are decorated with the IS-environment-responsive micellar system to ensure the release of the payload when they attack cancer cells. Using this strategy, the immunological cytotoxic killing effect of NK cells against solid tumors is reinforced with the site-specific diffusion of chemotherapeutic agents. Harnessing the intrinsic mechanism for the recognition of abnormal cells and the tumor-homing effect of NK cells limit the adverse systemic effects of chemotherapeutic drugs. This approach may provide a pragmatic platform for the universal and effective utilization of IS formation.


Subject(s)
Immunological Synapses/immunology , Killer Cells, Natural/immunology , Neoplasms/therapy , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/immunology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Communication/immunology , Cytotoxicity, Immunologic , Doxorubicin , Drug Carriers , Humans , Immunotherapy , Neoplasms/immunology , Neoplasms, Experimental/therapy , Optical Imaging
3.
Trends Immunol ; 38(6): 432-443, 2017 06.
Article in English | MEDLINE | ID: mdl-28499492

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are critical in the elimination of infected or malignant cells and are emerging as a major therapeutic target. How CTLs recognize and kill harmful cells has been characterized in vitro but little is known about these processes in the living organism. Here we review recent insights into CTL-mediated killing with an emphasis on in vivo CTL biology. Specifically, we focus on the possible rate-limiting steps determining the efficiency of CTL-mediated killing. We also highlight the need for cell-based datasets that permit the quantification of CTL dynamics, including CTL location, migration, and killing rates. A better understanding of these factors is required to predict protective CD8 T cell immunity in vivo and to design optimized vaccination protocols.


Subject(s)
Cytotoxicity, Immunologic , Immunity, Cellular , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Movement , Humans , Models, Immunological , Vaccination
5.
Front Immunol ; 5: 454, 2014.
Article in English | MEDLINE | ID: mdl-25295039

ABSTRACT

In cells of the immune system, the secretion of extracellular vesicles is modulated through cellular activation. In particular, T cell activation is achieved through cell-cell contacts with antigen presenting cells and the consequent formation of a specialized signaling junction called the immunological synapse. Recent works on CD4 T cells have elucidated that cognate antigen recognition by the T cell receptor (TCR) engages two distinct exocytic events. The first involves the exocytic targeting of signaling molecules at the synaptic membrane and drives the functional architecture of the immunological synapse. The second enlists the extracellular secretion of the TCR itself, once the functional architecture of the immunological synapse is accomplished. HIV-1, a human lymphotropic virus, has evolved sophisticated mechanisms to co-opt CD4 T cell physiology. Notably, it has become apparent that HIV-1 intersects the regulated secretory system of CD4 T cells in order to bud from the plasma membrane of the infected cell and to promote bystander cell death. Here, I review the relevance of CD4 vesicle exocytosis to immune regulation and to HIV-1 pathogenesis and discuss their potential therapeutic applications.

6.
Front Immunol ; 5: 104, 2014.
Article in English | MEDLINE | ID: mdl-24672525
7.
Front Immunol ; 4: 410, 2013.
Article in English | MEDLINE | ID: mdl-24348477

ABSTRACT

Upon engagement of their cognate class I major histocompatibility complex ligands, receptors containing immunotyrosine-based inhibitory motifs (ITIMs) transduce signals that block cytolytic and inflammatory responses. In this manner, ITIM-coupled receptors play a crucial role in maintaining natural killer (NK) cell tolerance toward normal, healthy tissue. A number of studies, mostly using immortalized NK cell lines, have demonstrated that ITIM signaling functions by disrupting the cytolytic immunological synapse formed between an NK cell and its target. However, more recent imaging experiments using primary NK cells have suggested that inhibitory receptor engagement does not antagonize contact formation, casting doubt on the hypothesis that ITIM signals destabilize the synapse. To resolve this issue, we analyzed primary NK cell activation and contact formation on supported lipid bilayers containing controlled combinations of activating and inhibitory ligands. Under these conditions, we observed that ITIM signaling clearly inhibited adhesion, cell arrest, and calcium influx, three hallmarks of synapse formation. These results are consistent with previous reports showing that inhibitory receptors deliver a "reverse stop" signal, and confirm that ITIM signaling functions at least in part by destabilizing cytolytic synapse formation.

SELECTION OF CITATIONS
SEARCH DETAIL