Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(46): 53755-53764, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37906700

ABSTRACT

The optimization of field-effect mobility in polymer field-effect transistors (FETs) is a critical parameter for advancing organic electronics. Today, many challenges still persist in understanding the roles of the design and processing of semiconducting polymers toward electronic performance. To address this, a facile approach to solution processing using blends of PDPP-TVT and PTPA-3CN is developed, resulting in a 3.5-fold increase in hole mobility and retained stability in electrical performance over 3 cm2 V-1 s-1 after 20 weeks. The amorphous D-A conjugated structure and strong intramolecular polarity of PTPA-3CN are identified as major contributors to the observed improvements in mobility. Additionally, the composite analysis by X-ray photoelectron spectroscopy (XPS) and the flash differential scanning calorimetry (DSC) technique showed a uniform distribution and was well mixed in binary polymer systems. This mobility enhancement technique has also been successfully applied to other polymer semiconductor systems, offering a new design strategy for blending-type organic transistor systems. This blending methodology holds great promise for the practical applications of OFETs.

SELECTION OF CITATIONS
SEARCH DETAIL