Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
Article in English | MEDLINE | ID: mdl-39354683

ABSTRACT

BACKGROUND AND HYPOTHESIS: Chronic kidney disease (CKD) patients are advised to limit their protein intake. A high protein diet is known to induce glomerular hyperfiltration, as well as hypertrophy of the remnant kidney, and glomerulosclerosis. Whether the diet causes changes in kidney tubule transport via gut microbiome metabolites is still unknown. We hypothesized that protein intake affects not only the intestinal generation and absorption, but also the kidney disposal of microbial amino acid metabolites. METHODS: We combined data from animal models and human studies. 5/6th nephrectomy rats were administered a high (HP) or low-protein (LP) diet for 7 weeks. Plasma and urine concentration of the uremic toxins (UTs) indoxyl sulfate (IS), p-cresyl sulfate (PCS), and p-cresyl glucuronide (PCG) were measured. Their fractional excretion (FE) was calculated. The expression of kidney membrane transporters OAT1, OAT3, BCRP, OCT2 and MRP4 was analyzed. Differences in FE of UTs between individuals with higher and lower protein intake in two CKD cohorts were sought. RESULTS: CKD rats on an HP diet showed increased plasma levels of PCS and PCG but not IS compared to rats on a LP diet. Conversely, urinary excretion and FE of IS were higher in the HP CKD group. BCRP, MRP4 and OCT2 were not influenced by the diet. OAT1 and OAT3 were upregulated in the HP CKD group. In two independent cohorts of CKD patients, individuals with a high dietary protein intake showed a significantly higher FE of IS. CONCLUSIONS: A HP diet leads to a higher generation and/or absorption of aminoacid-derived UT precursors in CKD rodent models and humans, most likely via gut microbiome modulation. We demonstrate that dietary protein intake modulates transcription and expression of OAT1 and OAT3, corroborating the existence of the remote sensing and signaling hypothesis. Dietary protein intake influences kidney physiology beyond glomerular filtration.

2.
Sci Rep ; 14(1): 23213, 2024 10 05.
Article in English | MEDLINE | ID: mdl-39369114

ABSTRACT

Indoxyl sulfate (IS), a uremic toxin, is a harmful factor that damages kidneys. Chronic heat stress in laying hens causes renal injury; however, whether IS accumulation is involved in this injury remains unknown. We selected 20 Boris brown laying hens (27 weeks old) and randomly assigned them to two groups (n = 10), one group was exposed to chronic heat stress (32 °C for 4 weeks), whereas the other was maintained at 24 °C. Chronic heat exposure significantly increased plasma and renal IS concentrations (P < 0.05). Exposure to heat also increased renal expression of the aryl hydrocarbon receptor (AhR) and its target genes (CYP1A4 and CYP1B1). Furthermore, chronic heat exposure tended to increase the 2-thiobarbituric acid reactive substances content (P = 0.08) and significantly decreased the antioxidant capacity in the kidney, while increasing the transcription levels of nuclear factor κB and fibrosis-related genes (COLA1A1, αSMA, TGF-ß, Smad3, and VCAM-1) and the area of renal fibrosis. Our results indicate that chronic heat exposure induces systemic and renal IS accumulation in laying hens. This accumulated IS may activate the AhR pathway and chronically disrupt the oxidative stress status and antioxidant activity, thus promoting renal fibrosis and dysfunction in laying hens.


Subject(s)
Chickens , Fibrosis , Heat-Shock Response , Indican , Kidney , Receptors, Aryl Hydrocarbon , Animals , Indican/blood , Indican/toxicity , Female , Kidney/metabolism , Kidney/pathology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Oxidative Stress , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology
3.
Expert Opin Drug Metab Toxicol ; : 1-13, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39323391

ABSTRACT

BACKGROUND: p-cresol and indole are uremic compounds which undergo sulfonation to generate the highly toxic p-cresol sulfate (pCS) and indoxyl sulfate (IxS). They are also subjected to glucuronidation to produce the less toxic p-cresol glucuronide (pCG) and indoxyl glucuronide (IG). We developed and validated an assay to quantify these metabolites in HepaRG cells. We also tested the effects of mefenamic acid on their in-situ formations in relation to the development of cellular necrosis. RESEARCH DESIGN AND METHODS: HepaRG cells were exposed to p-cresol or indole (0-1 mM) with mefenamic acid (0-3000 nM) for 24 hours to generate uremic metabolites. Cells were also exposed to 0.5 mM p-cresol or indole with/without 30 nM mefenamic acid to characterize lactate dehydrogenase (LDH) release. RESULTS: The assay exhibited high sensitivity and wide calibration ranges covering human concentrations. HepaRG cells also generated physiologically-relevant concentrations of each metabolite. Mefenamic acid inhibited pCS formation in a concentration-dependent manner without affecting pCG, IxS, or IG. Mefenamic acid also reduced LDH release from p-cresol (by 50.12±5.86%) or indole (56.26±3.58%). CONCLUSIONS: This novel assay is capable of quantifying these metabolites in HepaRG cells. Our novel findings suggest that mefenamic acid can be potentially utilized therapeutically to attenuate pCS-associated toxicities.

4.
J Transl Med ; 22(1): 870, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334140

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR), the principal cause of acquired blindness among the working-age population, is the most frequent microvascular complication of diabetes. Although metabolic disorders are hypothesized to play a role in its pathogenesis, the underlying mechanism remains largely elusive. METHODS: To elucidate the mechanism, we initially compared metabolite profiles of vitreous fluid between 23 patients with DR and 12 non-diabetic controls using liquid chromatography/tandem mass spectrometry, identifying the distinct metabolite indoxyl sulfate (IS). Subsequently, streptozotocin (STZ)-induced diabetic and IS-injected rat models were established to examine the effects of IS on retinal microvasculature. RNA sequencing was conducted to identify potential regulatory mechanisms in IS-treated human retinal endothelial cells (HREC). Finally, target gene knockdown in HREC and treatment of IS-injected rats with inhibitors (targeting IS production or downstream regulators) were employed to elucidate the detailed mechanisms and identify therapeutic targets for DR. RESULTS: Metabolomics identified 172 significantly altered metabolites in the vitreous humor of diabetics, including the dysregulated tryptophan metabolite indoxyl sulfate (IS). IS was observed to breach the blood-retinal barrier and accumulate in the intraocular fluid of diabetic rats. Both in vivo and in vitro experiments indicated that elevated levels of IS induced endothelial apoptosis and disrupted cell junctions. RNA sequencing pinpointed prostaglandin E2 (PGE2) synthetase-cyclooxygenase 2 (COX-2) as a potential target of IS. Validation experiments demonstrated that IS enhanced COX-2 expression, which subsequently increased PGE2 secretion by promoting transcription factor EGR1 binding to COX-2 DNA following entry into cells via organic anion transporting polypeptides (OATP2B1). Furthermore, inhibition of COX-2 in vivo or silencing EGR1/OATP2B1 in HREC mitigated IS-induced microcapillary damage and the activation of COX-2/PGE2. CONCLUSION: Our study demonstrated that indoxyl sulfate (IS), a uremic toxin originating from the gut microbiota product indole, increased significantly and contributed to retinal microvascular damage in diabetic retinopathy (DR). Mechanistically, IS impaired retinal microvascular integrity by inducing the expression of COX-2 and the production of PGE2. Consequently, targeting the gut microbiota or the PGE2 pathway may offer effective therapeutic strategies for the treatment of DR.


Subject(s)
Cyclooxygenase 2 , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Dinoprostone , Indican , Microvessels , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Animals , Humans , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Male , Microvessels/pathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Retinal Vessels/metabolism , Retinal Vessels/pathology , Retinal Vessels/drug effects , Rats , Middle Aged , Retina/pathology , Retina/metabolism , Retina/drug effects , Apoptosis/drug effects
5.
Hypertens Res ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300301

ABSTRACT

Cardiovascular diseases (CVDs) are a major cause of death in patients undergoing hemodialysis (HD). Blood pressure (BP) and uremic toxins are well-known risk factors for CVDs, which are influenced by diet. Dietary fiber supplementation in patients undergoing HD may reduce the risk of CVDs by improving lipid profiles and inflammatory status and lowering the levels of the uremic toxin indoxyl sulfate (IS). In this study, we investigated the relationship between the intestinal microbiota and risk factors for CVDs, such as BP and serum IS, in patients undergoing HD who consumed fruits granola (FGR). The study participants were selected from patients undergoing HD at the Izu Nagaoka Daiichi Clinic and consumed FGR for 2 months. Body composition and blood samples were tested at months 0, 1, 2 and fecal samples were collected at months 0 and 2 for intestinal microbiota analysis. FGR consumption decreased systolic and diastolic BP, estimated salt intake, and serum IS levels and improved the stool characteristics according to the Bristol Stool Form Scale (N = 24). Gut microbiota analysis showed an increase in the alpha diversity and abundance of Blautia and Neglecta. The abundance of lactic acid- and ethanol-producing bacteria also significantly increased, whereas the abundance of indole-producing bacteria significantly decreased. FGR consumption could be a useful tool for salt reduction, fiber supplementation, and improvement of the intestinal environment, thus contributing to improvement of BP and the reduction of other risk factors for CVDs in patients undergoing HD.

6.
Vet Sci ; 11(8)2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39195833

ABSTRACT

Serum uremic toxins markedly increase in cats with chronic kidney disease (CKD) and have deleterious consequences. Renaltec is an oral adsorbent that binds uremic toxin precursors in the gut. In this prospective cohort study utilizing 13 purpose-bred cats with remnant kidney model-induced CKD (12 IRIS Stage 2, 1 IRIS Stage 3) eating a standardized renal diet, we aimed to assess the effect of Renaltec administration on serum indoxyl sulfate (IDS) and p-cresol sulfate (pCS) concentrations. Cats were sequentially treated with standard of care for 56 days, 500 mg Renaltec orally once daily for 56 days, and then three months later, 500 mg Renaltec orally twice daily for 56 days. Serum IDS and pCS concentrations were measured 28 and 56 days after the administration of Renaltec. Blood pressure and kidney function were measured before and 56 days after the administration of Renaltec. Significant decreases in serum IDS and pCS concentrations were observed for both once- and twice-daily dosing, particularly during the first 28 days of administration. More cats with BID dosing had clinically significant reductions in serum IDS and pCS concentrations than with SID dosing. Renaltec can reduce the serum concentrations of deleterious gut-derived uremic toxins in cats with CKD.

7.
Methods Protoc ; 7(4)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39195442

ABSTRACT

3-indoxyl sulfate (3-IS) results from a hepatic transformation of indole, a tryptophan degradation product produced by commensal gut bacteria. The metabolite has shown promise as a biomarker of dysbiosis and clinical outcomes following hematopoietic stem cell transplant (HSCT) in adults. Nonetheless, there is a paucity of data regarding microbiome health and outcomes in the pediatric HSCT setting. We developed and thoroughly validated an affordable high-performance liquid chromatography/fluorescence detector (HPLC-FLD) method to quantify 3-IS in urine for use in the pediatric setting. Chromatographic separation was achieved on a C18 column (250 × 4.6 mm × 5 µm) with a mobile phase consisting of pH 4.0 acetic acid-triethylamine buffer and acetonitrile (88:12, v/v), eluted isocratically at 1 mL/min. 3-IS fluorescence detection was set at excitation/emission of 280 and 375, respectively. The method was fully validated according to FDA-specified limits including selectivity, linearity (0.10 to 10.00 mg/L, r2 > 0.997), intra- and inter-day accuracy, and precision. 3-IS stability was confirmed after three freeze-thaw cycles, for short- and medium-term on a benchtop and at 4 °C and for long-term up to 60 days at -20 °C. The validated method was used to quantify 3-IS in urine samples from HSCT pediatric patients.

8.
Int J Mol Sci ; 25(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39201457

ABSTRACT

Uremic toxins cause bone disorders in patients with chronic kidney disease (CKD). These disorders are characterized by low turnover osteodystrophy and impaired bone formation in the early stages of CKD. Evidence indicates that the aryl hydrocarbon receptor (AhR) mediates signals that suppress early osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). However, whether the AhR mediates the effects of indoxyl sulfate (IS), a uremic toxin, on BMSC osteogenesis remains unclear. We investigated whether IS affects osteogenesis through the AhR/Hes1 pathway. Expression levels of osteogenesis genes (Runx2, Bmp2, Alp, and Oc), AhR, and Hes1 were measured in mouse BMSCs (D1 cells). At concentrations of 2-50 µM, IS significantly reduced mineralization, particularly in the early stages of BMSC osteogenesis. Furthermore, IS significantly downregulated the expression of Runx2, Bmp2, Oc, and Alp. Notably, this downregulation could be prevented using an AhR antagonist and through Ahr knockdown. Mechanistically, IS induced the expression of Hes1 through AhR signaling, thereby suppressing the transcription of Runx2 and Bmp2. Our findings suggest that IS inhibits early osteogenesis of BMSCs through the AhR/Hes1 pathway, thus suppressing the transcription of Runx2 and Bmp2. Our findings may guide new therapeutic strategies against CKD-related bone disorders.


Subject(s)
Indican , Mesenchymal Stem Cells , Osteogenesis , Receptors, Aryl Hydrocarbon , Signal Transduction , Transcription Factor HES-1 , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Animals , Osteogenesis/drug effects , Mice , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Signal Transduction/drug effects , Cell Differentiation/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Basic Helix-Loop-Helix Transcription Factors
9.
Food Nutr Res ; 682024.
Article in English | MEDLINE | ID: mdl-39113916

ABSTRACT

Background: Uremic toxin indoxyl sulfate (IS) induces vascular inflammation, a crucial event in renal failure, and vascular complications in patients with chronic kidney disease (CKD). In endothelial cells, IS increases the production of inflammatory cytokines partially via the activation of the aryl hydrocarbon receptor (AhR), and several food flavonoids have been reported to act as antagonists of AhR. Objective: This study aimed to investigate whether antagonistic flavonoids can attenuate IS-induced inflammatory responses in vascular endothelial cells in vitro and renal failure in vivo. Design: Human umbilical vein endothelial cells (HUVECs) pretreated with the flavones apigenin, chrysin, or luteolin were stimulated with IS. Expression levels of genes involved in AhR signaling, inflammatory cytokine production, and reactive oxygen species (ROS) production were analyzed. Uninephrectomized mice were orally administered chrysin and received daily intraperitoneal injections of IS for 4 weeks. Results: In HUVECs, IS upregulated the mRNA expression of AhR-targeted genes (CYP1A1 and AhRR), and genes involved in inflammation (NOX4, MCP-1, IL-6, and COX2) and monocyte invasion/adhesion (ICAM1). All three flavones attenuated the IS-induced increase in the expression of these mRNAs. They also suppressed the IS-induced nuclear translocation of AhR and intracellular ROS production. Furthermore, IS-induced phosphorylation of the signal transducer and activator of transcription 3 (STAT3) was inhibited by treatment with these flavones. The results of in-vivo experiments showed that administration with chrysin attenuated the elevation of blood urea nitrogen levels and AhR-target gene expression and the pathological impairment of renal tissues in mice, regardless of higher serum levels of IS. Conclusions: Natural food flavones antagonizing AhR exerted protective effects against IS-induced inflammation through the inhibition of the AhR-STAT3 pathway in HUVECs. Moreover, chrysin ameliorated IS-induced renal dysfunction in a mouse model of CKD. These flavonoids could be a therapeutic strategy for vascular inflammation in CKD.

10.
Heliyon ; 10(15): e35032, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39157307

ABSTRACT

The uremic toxin indoxyl sulfate (IS) has been related to the development of various medical conditions notably chronic kidney disease (CKD). Hence, quantification of this biomarker in biological fluids may be a diagnostic tool to evaluate renal system functionality. Numerous analytical methods including liquid chromatography, gas chromatography, spectroscopy, and electrochemical techniques have since been used to analyze IS in different biological fluids. The current review highlights the relevant studies that assessed IS with a special focus on sample preparation, which is essential to reduce or eliminate the effect of endogenous components from the matrix in bioanalysis.

11.
J Clin Med ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39124652

ABSTRACT

Background/Objectives: Indoxyl sulfate, a uremic toxin, is associated with mortality and cardiovascular events in patients with chronic kidney disease (CKD). This study aimed to evaluate the prognostic implications of serum indoxyl sulfate levels in patients with heart failure and CKD. Methods and Results: This was a prospective multicenter observational study. Overall, 300 patients with chronic heart failure with a previous history of hospitalization and an estimated glomerular filtration rate (eGFR) of 45 mL/min/1.73 m2 or less (CKD stage G3b to G5) without dialysis were analyzed. The primary outcome assessed in a time-to-event analysis from the measurement of indoxyl sulfate was a composite of all-cause death, hospitalization for heart failure, nonfatal myocardial infarction, and nonfatal stroke. Clinical events were followed-up to one year after indoxyl sulfate measurement. The median patient age was 75 years, and 57% of the patients were men. We divided the cohort into low and high indoxyl sulfate categories according to a median value of 9.63 mg/mL. The primary outcome occurred in 27 of 150 patients (18.0%) in the low indoxyl sulfate group and 27 of 150 patients (18.0%) in the high indoxyl sulfate group (hazard ratio, 1.00; 95% confidence interval, 0.58 to 1.70, p = 0.99). In the post hoc exploratory analyses, the results were consistent across age, sex, body mass index, left ventricular ejection fraction, eGFR, and N-terminal pro b-type natriuretic peptide. Conclusions: Among heart failure patients with CKD stages G3b to 5G, serum indoxyl sulfate concentrations were not significantly associated with the subsequent occurrence of cardiovascular events.

12.
Environ Toxicol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105397

ABSTRACT

In patients with chronic kidney disease, the uremic toxin indoxyl sulfate (IS) accelerates kidney damage and the progression of cardiovascular disease. IS may contribute to vascular diseases by inducing inflammation in endothelial cells. Luteolin has documented antioxidant and anti-inflammatory properties. This study aimed to investigate the effect of luteolin on IS-mediated reactive oxygen species (ROS) production and intercellular adhesion molecule (ICAM-1) and monocyte chemoattractant protein (MCP-1) expression in EA.hy926 cells and the possible mechanisms involved. IS significantly induced ROS production (by 6.03-fold, p < 0.05), ICAM-1 (by 2.19-fold, p < 0.05) and MCP-1 protein expression (by 2.18-fold, p < 0.05), and HL-60 cell adhesion (by 31%, p < 0.05), whereas, luteolin significantly decreased IS-induced ROS production, ICAM-1 and MCP-1 protein expression, and HL-60 cell adhesion. Moreover, luteolin attenuated IS-induced nuclear accumulation of p65 and c-jun. Luteolin dose-dependently increased heme oxygenase-1 (HO-1) expression and the maximum fold induction of HO-1 by luteolin was 3.68-fold (p < 0.05), whereas, HO-1 knockdown abolished the suppression of ICAM-1 and MCP-1 expression by luteolin. Luteolin may protect against IS-induced vessel damage by inducing HO-1 expression in vascular endothelial cells, which suppresses nuclear factor kappa B (NF-κB) and activator protein 1 (AP-1) mediated ICAM-1 and MCP-1 expression.

13.
Toxins (Basel) ; 16(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39057956

ABSTRACT

The characteristic accumulation of circulating uremic toxins, such as indoxyl sulfate (IS), in chronic kidney disease (CKD) further exacerbates the disease progression. The gut microbiota, particularly gut bacterial-specific enzymes, represents a selective and attractive target for suppressing uremic toxin production and slowing the progression of renal failure. This study investigates the role of 4-phenylbutyrate (PB) and structurally related compounds, which are speculated to possess renoprotective properties in suppressing IS production and slowing or reversing renal failure in CKD. In vitro enzyme kinetic studies showed that 7-phenylheptanoic acid (PH), a PB homologue, suppresses the tryptophan indole lyase (TIL)-catalyzed decomposition of tryptophan to indole, the precursor of IS. A hydroxypropyl ß-cyclodextrin (HPßCD) inclusion complex formulation of PH was prepared to enhance its biopharmaceutical properties and to facilitate in vivo evaluation. Prophylactic oral administration of the PH-HPßCD complex formulation reduced circulating IS and attenuated the deterioration of renal function and tubulointerstitial fibrosis in adenine-induced CKD mice. Additionally, treatment of moderately advanced adenine-induced CKD mice with the formulation ameliorated renal failure, although tissue fibrosis was not improved. These findings suggest that PH-HPßCD can slow the progression of renal failure and may have implications for preventing or managing CKD, particularly in early-stage disease.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin , Adenine , Disease Progression , Renal Insufficiency, Chronic , Animals , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/chemically induced , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Male , Mice , Phenylbutyrates/pharmacology , Phenylbutyrates/therapeutic use , Indican , Mice, Inbred C57BL , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Uremic Toxins
14.
Elife ; 122024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980302

ABSTRACT

Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.


Subject(s)
Indican , Kidney Failure, Chronic , Receptors, Aryl Hydrocarbon , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Kidney Failure, Chronic/immunology , Kidney Failure, Chronic/metabolism , Humans , Mice , Monocytes/immunology , Monocytes/metabolism , Monocytes/drug effects , Arachidonic Acid/metabolism , Male , Immunity, Innate/drug effects , Mice, Inbred C57BL , Arachidonate 5-Lipoxygenase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Trained Immunity
15.
Biol Pharm Bull ; 47(7): 1350-1359, 2024.
Article in English | MEDLINE | ID: mdl-39085074

ABSTRACT

Indigo naturalis (IN), derived from the leaves of the indigo plant, is a traditional Chinese medicine that has historically been used for its anti-inflammatory properties in the treatment of various diseases, including ulcerative colitis (UC). However, long-term use of IN in UC patients is incontrovertibly associated with the onset of pulmonary arterial hypertension (PAH). To investigate the mechanisms by which IN induces PAH, we focused on the raw material of IN, indigo leaves (IL). Only the condition of long-term chronic (6 months) and high-dose (containing 5% IL in the control diet) administration of IL induced medial thickening in the pulmonary arteries without right ventricular hypertrophy in our rat model. IL administration for a month did not induce pulmonary arterial remodeling but increased endothelin-1 (ET-1) expression levels within endothelial cell (EC) layers in the lungs. Gene Expression Omnibus analysis showed that ET-1 is a key regulator of PAH and that the IL component indican and its metabolite IS induced ET-1 mRNA expression via reactive oxygen species-dependent mechanism. We identified the roles of indican and IS in ET-1 expression in ECs, which were linked to pulmonary arterial remodeling in an animal model.


Subject(s)
Endothelin-1 , Hypertrophy, Right Ventricular , Plant Leaves , Pulmonary Artery , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Male , Endothelin-1/metabolism , Vascular Remodeling/drug effects , Hypertrophy, Right Ventricular/metabolism , Hypertrophy, Right Ventricular/physiopathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Rats , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Lung/drug effects , Lung/pathology , Lung/metabolism
16.
Pharmaceutics ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38931865

ABSTRACT

Indoxyl sulfate (IxS) and p-cresyl sulfate (pCS) are toxic uremic compounds with documented pathological outcomes. This review critically and comprehensively analyzes the available liquid chromatography-mass spectrometry methods quantifying IxS and pCS in human matrices and the biological applications of these validated assays. Embase, Medline, PubMed, Scopus, and Web of Science were searched until December 2023 to identify assays with complete analytical and validation data (N = 23). Subsequently, citation analysis with PubMed and Scopus was utilized to identify the biological applications for these assays (N = 45). The extraction methods, mobile phase compositions, chromatography, and ionization methods were evaluated with respect to overall assay performance (e.g., sensitivity, separation, interference). Most of the assays focused on human serum/plasma, utilizing acetonitrile or methanol (with ammonium acetate/formate or formic/acetic acid), liquid-liquid extraction, reverse phase (e.g., C18) chromatography, and gradient elution for analyte separation. Mass spectrometry conditions were also consistent in the identified papers, with negative electrospray ionization, select multiple reaction monitoring transitions and deuterated internal standards being the most common approaches. The validated biological applications indicated IxS and/or pCS were correlated with renal disease progression and cardiovascular outcomes, with limited data on central nervous system disorders. Methods for reducing IxS and/or pCS concentrations were also identified (e.g., drugs, natural products, diet, dialysis, transplantation) where inconsistent findings have been reported. The clinical monitoring of IxS and pCS is gaining significant interest, and this review will serve as a useful compendium for scientists and clinicians.

17.
Oral Dis ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934473

ABSTRACT

OBJECTIVES: The purpose of this study was to determine whether indoxyl sulfate (IS) is involved in alveolar bone deterioration and to elucidate the mechanism underlying alveolar bone loss in chronic kidney disease (CKD) patients. MATERIALS AND METHODS: Mice were divided into the control group, CP group (ligature-induced periodontitis), CKD group (5/6 nephrectomy), and CKD + CP group. The concentration of IS in the gingival crevicular fluid (GCF) was determined by HPLC. The bone microarchitecture was evaluated by micro-CT. MC3T3-E1 cells were stimulated with IS, and changes in mitochondrial morphology and ferroptosis-related factors were detected. RT-PCR, western blotting, alkaline phosphatase activity assays, and alizarin red S staining were utilized to assess how IS affects osteogenic differentiation. RESULTS: Compared with that in the other groups, alveolar bone destruction in the CKD + CP group was more severe. IS accumulated in the GCF of mice with CKD. IS activated the aryl hydrocarbon receptor (AhR) in vitro, inhibited MC3T3-E1 cell osteogenic differentiation, caused changes in mitochondrial morphology, and activated the SLC7A11/GPX4 signaling pathway. An AhR inhibitor attenuated the aforementioned changes induced by IS. CONCLUSIONS: IS activated the AhR/SLC7A11/GPX4 signaling pathway, inhibited osteogenesis in MC3T3-E1 cells, and participated in alveolar bone resorption in CKD model mice through ferroptosis.

18.
Life Sci ; 351: 122810, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38871114

ABSTRACT

AIMS: Cardiovascular pathology is the main cause of death in chronic kidney disease (CKD) patients. CKD is associated with the accumulation of uremic toxins in the bloodstream, and indoxyl sulfate (IS) is one of the most abundant uremic toxins found in the blood of CKD patients. We conducted an in vitro study to assess the mechanisms underlying the IS-induced endothelial dysfunction that could lead to cardiovascular diseases. We also studied their extracellular vesicles (EVs) owing to their capacity to act as messengers that transmit signals through their cargo. MAIN METHODS: EVs were characterized by nanoparticle tracking analysis, transmission electron microscopy, flow cytometry, and tetraspanin expression. Cell lysates and isolated EVs were analyzed using liquid chromatography coupled with mass spectrometry, followed by Gene Set Enrichment Analysis to identify the altered pathways. KEY FINDINGS: Proteomic analysis of endothelial cells revealed that IS causes an increase in proteins related to adipogenesis, inflammation, and xenobiotic metabolism and a decrease in proliferation. Extracellular matrix elements, as well as proteins associated with myogenesis, response to UV irradiation, and inflammation, were found to be downregulated in IS-treated EVs. Fatty acid metabolism was also found to be increased along with adipogenesis and inflammation observed in cells. SIGNIFICANCE: The treatment of endothelial cells with IS increased the expression of proteins related to adipogenesis, inflammation, and xenobiotic metabolism and was less associated with proliferation. Furthermore, EVs from cells treated with IS may mediate endothelial dysfunction, since they present fewer extracellular matrix elements, myogenesis, inflammatory factors, and proteins downregulated in response to UV radiation.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Indican , Proteomics , Renal Insufficiency, Chronic , Indican/metabolism , Extracellular Vesicles/metabolism , Humans , Renal Insufficiency, Chronic/metabolism , Proteomics/methods , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Proteome/metabolism
19.
Toxins (Basel) ; 16(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38922148

ABSTRACT

Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease (CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to traditional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification in CKD patients. The accumulation of uremic toxins is a significant factor in CKD-related systemic disorders. Basic research suggests that indoxyl sulfate (IS), a small protein-bound uremic toxin, is associated with macrophage dysfunctions, including increased oxidative stress, exacerbation of chronic inflammation, and abnormalities in lipid metabolism. Strategies to mitigate the toxicity of IS include optimizing gut microbiota, intervening against the abnormality of intracellular signal transduction, and using blood purification therapy with higher efficiency. Further research is needed to examine whether lowering protein-bound uremic toxins through intervention leads to a reduction in CVD in patients with CKD.


Subject(s)
Atherosclerosis , Indican , Macrophages , Renal Insufficiency, Chronic , Uremia , Indican/toxicity , Humans , Macrophages/drug effects , Animals , Uremic Toxins , Gastrointestinal Microbiome/drug effects , Oxidative Stress/drug effects
20.
Biosci Biotechnol Biochem ; 88(9): 1081-1089, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38849302

ABSTRACT

Indoxyl sulfate (IS), a uremic toxin, is a physiologically active sulfated metabolite, specifically in kidney failure patients. Our previous studies have shown that IS downregulates phagocytic immune function in a differentiated HL-60 human macrophage cell model. However, it remains unclear whether IS exerts similar effects on macrophage function in other cell types or in lipopolysaccharide (LPS)-sensitive immune cell models. Therefore, this study aimed to investigate the effects of IS on intracellular oxidation levels and phagocytic activity in a differentiated U937 human macrophage cell model, both in the absence and presence of LPS. Our results demonstrated that IS significantly increases intracellular oxidation levels and decreases phagocytic activity, particularly in cells activated by LPS. Furthermore, we found that 2-acetylphenothiazine, an NADH oxidase inhibitor, attenuates the effects of IS in LPS-activated macrophage cells. Representative antioxidants, trolox, α-tocopherol, and ascorbic acid, significantly mitigated the effects of IS on the macrophages responding to LPS.


Subject(s)
Antioxidants , Cell Differentiation , Indican , Lipopolysaccharides , Macrophages , Oxidation-Reduction , Phagocytosis , Humans , Indican/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Phagocytosis/drug effects , Antioxidants/pharmacology , Oxidation-Reduction/drug effects , Lipopolysaccharides/pharmacology , U937 Cells , Cell Differentiation/drug effects , Chromans/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL