Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Toxicol Appl Pharmacol ; 490: 117038, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019095

ABSTRACT

Cholestasis is a hepatobiliary disorder characterized by the excessive accumulation of toxic bile acids in hepatocytes, leading to cholestatic liver injury (CLI) through multiple pathogenic inflammatory pathways. Currently, there are limited therapeutic options for the management of cholestasis and associated CLI; therefore, new options are urgently needed. Pirfenidone (PF), an oral bioavailable pyridone analog, is used for the treatment of idiopathic pulmonary fibrosis. PF has recently demonstrated diverse potential therapeutic activities against different pathologies. Accordingly, the present study adopted the α-naphthyl isothiocyanate (ANIT)-induced CLI model in mice to explore the potential protective impact of PF and investigate the underlying mechanisms of action. PF intervention markedly reduced the serum levels of ALT, AST, LDH, total bilirubin, and total bile acids, which was accompanied by a remarkable amelioration of histopathological lesions induced by ANIT. PF also protected the mice against ANIT-induced redox imbalance in the liver, represented by reduced MDA levels and elevated GSH and SOD activities. Mechanistically, PF inhibited ANIT-induced downregulated expressions of the farnesoid X receptor (FXR), as well as the bile salt export pump (BSEP) and the multidrug resistance-associated protein 2 (MRP2) bile acid efflux channels. PF further repressed ANIT-induced NF-κB activation and TNF-α and IL-6 production. These beneficial effects were associated with its ability to dose-dependently inhibit Wnt/GSK-3ß/ß-catenin/cyclin D1 signaling. Collectively, PF protects against ANIT-induced CLI in mice, demonstrating powerful antioxidant and anti-inflammatory activities as well as an ability to oppose BA homeostasis disorder. These protective effects are primarily mediated by modulating the interplay between FXR, NF-κB/TNF-α/IL-6, and Wnt/ß-catenin signaling pathways.

2.
Heliyon ; 10(12): e32980, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022030

ABSTRACT

Fiscal compensation may play either an incentive or a crowding-out role in the different enterprises of the PV industry. First, a model for evaluating the efficiency of fiscal compensation was designed. Then, an empirical analysis of the influencing factors using a panel data model was made. Results showed that fiscal compensation had an incentive effect on 73.3 % of enterprises, but it had a crowding-out effect on the remaining enterprises. The average efficiency of fiscal compensation for enterprises in the PV industry is 1.117. The average efficiency of fiscal compensation for the front-end and back-end enterprises was 1.002 and 1.231, respectively. The impact of fiscal compensation on China's photovoltaic industry has shown a downward trend over time, and the role has also changed from an incentive effect to a crowding-out effect. The size of the enterprise and the intensity of fiscal compensation will affect the efficiency of fiscal compensation. There is an inverted U-shaped relationship between the intensity of fiscal compensation in China's photovoltaic industry and the efficiency of fiscal compensation. The larger the enterprise, the more efficient the fiscal compensation will be.

3.
BMC Oral Health ; 24(1): 776, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992678

ABSTRACT

BACKGROUND: Early childhood caries (ECC) is a global public health challenge that requires innovation, infrastructure, and health system influences to bolster initiatives for its management and control. The aim of this scoping review was to investigate the published evidence on the association between ECC and the targets of the Sustainable Development Goal 9 (SDG9) concerned with industry, innovation, and infrastructure development. METHODS: The scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. A search was conducted in PubMed, Web of Science, and Scopus between July and August 2023 using a search strategy related to the promotion of resilient infrastructure, sustainable industries, scientific research and innovation, access to the internet and ECC. Only English language publications were included. Studies that solely examined ECC without reference to the SDG9 targets were excluded. RESULTS: The search yielded 933 studies for review. After screening for the eligibility and removing duplicates, 916 unique articles remained for further screening. However, none of the identified studies provided data on the association between resilient infrastructure, sustainable industries, scientific research and innovation, access to the internet and ECC. CONCLUSION: There were no primary studies that assessed the association between ECC and SDG9, even though the plausibility of a potential relationship exists. Future studies are needed to generate evidence on the link between ECC and SDG9 as this link may contribute to the reduction in the proportion of children with untreated ECC.


Subject(s)
Dental Caries , Sustainable Development , Humans , Dental Caries/prevention & control , Child, Preschool , Child , Global Health
4.
Saudi Pharm J ; 32(7): 102106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38831925

ABSTRACT

Chemical investigation of Carthamus tinctorius L. flowers resulted in isolation of seven metabolites that were identified as; p-Hydroxybenzoic acid (1), trans hydroxy cinnamic acid (2), kaempferol-6-C-glucoside (3), astragalin (4), cartormin (5), kaempferol-3-O-rutinoside (6), and kaempferol-3-O-sophoroside (7). Virtual screening of the isolated compounds against human intestinal α-glucosidase, acetylcholinesterase, and butyrylcholinesterase was carried out. Additionally, the antioxidant activity of the bioactive compounds was assessed. Compounds 1 and 5 exhibited moderate binding affinities to acetylcholinesterase (binding energy -5.33 and -4.18 kcal/mol, respectively), compared to donepezil (-83.33kcal/mol). Compounds 1-7 demonstrated weak affinity to butyrylcholinesterase. Compounds 2 and 4 displayed moderate binding affinity to human intestinal α-glucosidase,compared to Acarbose (reference compound), meanwhile compound 2 exhibited lower affinity. Molecular dynamic studies revealed that compound 4 formed a stable complex with the binding site throughout a 100 ns simulation period. The in-vitro results were consistent with the virtual experimental results, as compounds 1 and 5 showed mild inhibitory effects on acetylcholinesterase (IC50s 150.6 and 168.7 µM, respectively). Compound 4 exhibited moderate α-glucosidase inhibition with an IC50 of 93.71 µM. The bioactive compounds also demonstrated notable antioxidant activity in ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)], ORAC (oxygen radical-absorbance capacity), and metal chelation assays, suggesting their potential in improving dementia in Alzheimer's disease (AD) and mitigating hyperglycemia.

5.
Heliyon ; 10(11): e32137, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912459

ABSTRACT

The global fiberglass-composite market is expanding tremendously due to its extensive applications in the construction and automotive sector. The progress in low-medium income developing countries is slow. This study explores an exclusive hybrid model of SWOT (strengths, weaknesses, opportunities, and threats) analysis and Fuzzy extended PIPRECIA (pivot pairwise relative criteria importance assessment) to evaluate the strategies for sustainable development of fiberglass composites industry in Pakistan as a representative of low-medium developing countries. SWOT analysis is employed for examining the factors and sub-factors which have been extracted from a real-time industrial survey. While internal and external factors are also critically established to formulate a TOWS matrix comprising nine proposed strategies. Later the preferences as proposed by experts are evaluated by Fuzzy extended PIPRECIA i.e., a MCDM (multi-criteria decision making) model. Finally, SWOT factors, sub-factors and strategic choices are orderly ranked and presented. The results of the study reveal that development of a suitable environment to attract investors for the advancement and growth of the local fiber composites manufacturing industry (WO2 i.e., 0.175) is a most desirable and highly prioritized strategic choice. While maximizing environmental research to reduce environmental impact and better management of resources (WT2 i.e., 0.076) is the least favorable. The application of this exclusively developed MCDM model will provide an insight to the policy makers and assistive in strategic management and sustainable development of composite industry in developing countries. While this model can also be effective for other complex planning and decision-making processes.

6.
Heliyon ; 10(10): e31448, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813141

ABSTRACT

APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.

7.
SAR QSAR Environ Res ; 35(5): 391-410, 2024 May.
Article in English | MEDLINE | ID: mdl-38769919

ABSTRACT

Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).


Subject(s)
Acetylcholinesterase , Alpinia , Antioxidants , Butyrylcholinesterase , Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Rhizome , Alpinia/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Rhizome/chemistry , Butyrylcholinesterase/metabolism , Acetylcholinesterase/metabolism , alpha-Glucosidases/metabolism , Quantitative Structure-Activity Relationship , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Humans
9.
Int Microbiol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767683

ABSTRACT

In the relentless battle against multi-drug resistant Gram-negative bacteria, piceatannol emerges as a beacon of hope, showcasing unparalleled antibacterial efficacy and a unique ability to disrupt virulence factors. Our study illuminates the multifaceted prowess of piceatannol against prominent pathogens-Proteus mirabilis, Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. Notably, piceatannol demonstrated a remarkable ability to inhibit biofilm formation, reduce bacterial mobility, and diminish extracellular enzyme synthesis.Mechanistic insights into piceatannol's activity unraveled its impact on membrane potential, proton motive force, and ATP production. Furthermore, our study delved into piceatannol's anti-quorum sensing (QS) activity, showcasing its potential to downregulate QS-encoding genes and affirming its affinity to critical QS receptors through molecular docking. Crucially, piceatannol exhibited a low propensity for resistance development, positioning it as a promising candidate for combating antibiotic-resistant strains. Its mild effect on red blood cells (RBCs) suggests safety even at higher concentrations, reinforcing its potential translational value. In an in vivo setting, piceatannol demonstrated protective capabilities, significantly reducing pathogenesis in mice infected with P. aeruginosa and P. mirabilis. This comprehensive analysis positions piceatannol as a renaissance in antibacterial innovation, offering a versatile and effective strategy to confront the evolving challenges posed by resilient Gram-negative pathogens.

10.
Environ Manage ; 73(6): 1215-1229, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578324

ABSTRACT

As representative of the water-energy-food nexus, fossil fuel development and industrial agriculture are rural industries that continue to expand and increasingly occur in the same areas. Being a top agricultural export county and the fossil fuel capital of California while ranking among the worst in the US for industrial pollution, Kern County is a poster child of rural nexus development and, thus, an essential place for initiating sustainability transitions. Such transitions rely on policy support and the adoption of methods by individuals and communities who may disagree with such changes. While sense of place and impact perceptions are recognized as playing critical roles in sustainability management, they have yet to be utilized in nexus research. A survey (N = 256) of the perceived impacts of nexus industries with place meaning and place attachment as possible drivers for perceptions was conducted in nexus industry pollution exposure risk zones. Factor analysis and bivariate correlations showed that place meaning and place attachment are drivers for perceptions while also being drivers for concern for changes in nexus industries. While perceptions of impacts indicated contested place meanings, participants strongly perceive the economy and environment as being in decline. To build support for sustainability policy, directing funds from Kern County's renewable energy industry to local sectors of society, implementation of regenerative agriculture, cooperative management, and nurturing place meaning as aligned with nature's restorative quality are important paths forward. These nexus management foci could strengthen place attachment, build trust in government, and repair environmental alienation.


Subject(s)
Agriculture , Conservation of Natural Resources , California , Humans , Rural Population , Fossil Fuels
11.
Saudi Pharm J ; 32(5): 102041, 2024 May.
Article in English | MEDLINE | ID: mdl-38558886

ABSTRACT

The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.

12.
Saudi Pharm J ; 32(6): 102073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38681737

ABSTRACT

The current study explored the protective potential of kaempferol 3-sophoroside-7-glucoside (KSG) against acute lung injury (ALI). Pre-treatment with KSG effectively secured mice from ALI and showed similar efficaciousness to dexamethasone. KSG markedly increased the survival rate and alleviated lung pathological lesions induced by lipopolysaccharide (LPS). Furthermore, KSG attenuated differential and total cell counts in BALF (bronchoalveolar lavage fluid) and MPO (myeloperoxidase) activity. KSG counteracted the NF-κB (nuclear factor-κB) activation and significantly ameliorated the downstream inflammatory cytokine, TNF-α (tumor necrosis factor-α). Simultaneously, KSG suppressed the over-expression of NLRP3 (NOD-like receptor protein 3), caspase-1, and pro-inflammatory cytokine interleukin IL-1ß (interleukine-1ß) and prohibited the elevation of the pyroptotic parameter GSDMD-N (N-terminal domain of gasdermin D) induced by LPS challenge. In addition, KSG significantly enhanced Nrf2 (nuclear-factor erythroid-2-related factor) and HO-1 (heme-oxygenase-1) expression. Meanwhile, KSG mitigated lipid peroxidative markers (malondialdehyde, protein carbonyl and 4-hydroxynonenal) and boosted endogenous antioxidants (superoxide dismutase/reduced glutathione/catalase) in lung tissue. In silico analyses revealed that KSG disrupts Keap1-Nrf2 protein-protein interactions by binding to the KEAP1 domain, consequently activating Nrf2. Specifically, molecular docking demonstrated superior binding affinity of KSG to KEAP1 compared to the reference inhibitor, with docking scores of -9.576 and -6.633 Kcal/mol, respectively. Additionally, the MM-GBSA binding free energy of KSG (-67.25 Kcal/mol) surpassed that of the reference inhibitor (-56.36 Kcal/mol). Furthermore, MD simulation analysis revealed that the KSG-KEAP1 complex exhibits substantial and stable binding interactions with various amino acids over a duration of 100 ns. These findings showed the protective anti-inflammatory and anti-oxidative modulatory efficiencies of KSG that effectively counteracted LPS-induced ALI and encouraged future research and clinical applications of KSG as a protective strategy for ALI.

13.
Medicina (Kaunas) ; 60(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38541153

ABSTRACT

Background and Objectives: The enteric form of omeprazole is one of the most commonly prescribed medications. Similarly to Europe, Kazakhstan relies on the localization of pharmaceutical drug production as one of its primary strategies to ensure that its population has access to affordable and good-quality medicines. This study comprehensively describes the technologically available development of bioequivalent delayed-release omeprazole. Materials and Methods: Various regimes and technological parameters were tested on laboratory- and production-scale equipment to establish a technical process where a functional and gastro-protective layer is essential. According to the ICH guidance on stability testing and Kazakhstan local rules, stability studies were conducted under conditions appropriate for climate zone II. The comparison of the rate and extent of absorption with subsequent assessment of the bioequivalence of the generic and reference drugs after a single dose of each drug at a dose of 40 mg was performed. Results: The quantitative and qualitative composition and technology of producing a new generic enteric form of omeprazole in capsules were developed and implemented at the manufacturing site of solid forms. Dissolution profiles in media with pH 1.2 and 6.8 were proven. During the accelerated six-month and long-term twelve-month studies, the developed formulation in both packaging materials at each control point passed the average weight and mass uniformity test, dissolution test, acid-resistance stage test, buffer stage test, impurity assay, and microbiological purity test and met all the specification criteria. A bioequivalence study in 24 healthy volunteers compared against the innovative drug showed the bioequivalency of the new generic system. The obtained values from the test and reference products were 1321 ± 249.0 ng/mL and 1274 ± 233 ng/mL for Cmax, 4521 ± 841 ng·h /mL and 4371 ± 695 ng·h /mL for AUC0-t, and 4636 ± 814 ng·h /mL and 4502 ± 640 ng·h /mL for AUC0-∞. Conclusions: Using affordable technologies, a bioequivalent generic delayed-release formulation of 20 and 40 mg omeprazole has been developed.


Subject(s)
Omeprazole , Humans , Omeprazole/chemistry , Therapeutic Equivalency , Capsules , Cross-Over Studies , Europe
14.
Heliyon ; 10(3): e24976, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322930

ABSTRACT

Industrial development is the prerequisite for sustainable economic growth. This study has examined the impact of the interest rate imposed on advances in the small and medium enterprise (SME) industrial sector, the large industrial (LI) sector, and inflation on the total industrial development of Bangladesh. For this purpose, we have used monthly data from January 2015 to June 2021. The weighted average interest rate of advances (WAIRA) is used as a substitute for the interest rate imposed on advances that were sourced from Bangladesh Bank (BB). We have applied Johansen co integration and the VECM technique to investigate long- and short run relationships, and the results have revealed the existence of both. We have observed that, in the short run, only WAIRA on SME industries has a significant negative impact on total industrial development. In the long run, inflation and WAIRA on SME and large industry have a significant impact on industrial development. The long run relationships have indicated that, inflation and WAIRA in the SME sector have a negative influence on total industrial development, but WAIRA in the large industry (LI) sector has a positive influence. Finally, considering the entire situation of the economy of Bangladesh, especially the growing industrial sector, these findings are highly momentous for policy implications and achieving sustainable development in this sector.

15.
Int J Biol Macromol ; 263(Pt 2): 130364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401579

ABSTRACT

It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated ß-d-galactan sulfates, sulfated arabinogalactans, sulfated ß-l-arabinans, and sulfated ß-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.


Subject(s)
Chlorophyta , Seaweed , Sulfates/chemistry , Chlorophyta/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Seaweed/chemistry , Mannans , Anticoagulants/chemistry
16.
Int Immunopharmacol ; 130: 111732, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38402834

ABSTRACT

Fulminant hepatic failure (FHF) is the terminal phase of acute liver injury, which is characterized by massive hepatocyte necrosis and rapid hepatic dysfunction in patients without preexisting liver disease. There are currently no therapeutic options for such a life-threatening hepatic failure except liver transplantation; therefore, the terminal phase of the underlying acute liver injury should be avoided. Tomatidine (TOM), asteroidal alkaloid, may have different biological activities, including antioxidant and anti-inflammatory effects. Herein, the lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced FHF mouse model was established to explore the protective potential of TOM and the underlying mechanisms of action. TOM pretreatment significantly inhibited hepatocyte necrosis and decreased serum aminotransferase activities in LPS/D-GalN-stimulated mice. TOM further increased the level of different antioxidant enzymes while reducing lipid peroxidation biomarkers in the liver. These beneficial effects of TOM were shown to be associated with targeting of NF-κB signaling pathways, where TOM repressed NF-κB activation and decreased LPS/D-GalN-induced TNF-α, IL-6, IL-1ß, and iNOS production. Moreover, TOM prevented LPS/D-GalN-induced upregulation of Keap1 expression and downregulation of Nrf2 and HO-1 expression, leading to increased Nrf2-binding activity and HO-1 levels. Besides, TOM pretreatment repressed LPS/D-GalN-induced upregulation of proliferating cell nuclear antigen (PCNA) expression, which spared the hepatocytes from damage and subsequent repair following the LPS/D-GalN challenge. Collectively, our findings revealed that TOM has a protective effect on LPS/D-GalN-induced FHF in mice, showing powerful antioxidant and anti-inflammatory effects, primarily mediated via modulating Keap1/Nrf2/HO-1 and NF-κB/TNF-α/IL-6/IL-1ß/iNOS signaling pathways.


Subject(s)
Liver Failure, Acute , NF-kappa B , Tomatine/analogs & derivatives , Humans , Mice , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Liver Failure, Acute/metabolism , NF-E2-Related Factor 2/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction , Liver , Oxidative Stress , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Necrosis/metabolism , Galactosamine/pharmacology
17.
J Environ Manage ; 351: 119778, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086113

ABSTRACT

This work was focused on the selective recovery of gold and silver from electronic wastes using a sequential process of pyrometallurgy (Qalkari) and room-temperature hydrometallurgy. In the first step, electronic wastes underwent Qalkari recycling, yielding tablets containing precious elements (Qalkari furnace product) and melting slag (Qalkari furnace waste). In the subsequent hydrometallurgy phase, the nitric acid concentration and the input solid amount were optimized for the effective room-temperature recovery of gold. Due to the successful separation of precision elements and disturbing substances in Qalkari, the gold recovery efficiency of 99.99% was obtained at the acid concentration of 50% (v/v) and the solid input of 15% (w/v). Afterwards, HCl, NH4Cl, and NaCl were used for silver recovery from the Qalkari-processed gold-recovered leaching solution, leading to the efficiency of 99.99%. But NH4Cl was recognized as the most effective precipitant as it promises the most enhanced potential for the possible subsequent recovery of palladium. In conclusion, this study draws the effectiveness of Qalkari in recycling electronic wastes, with a significant impact on the efficiency of succeeding room-temperature hydrometallurgical processes for gold and silver recovery within a reasonable leaching time.


Subject(s)
Electronic Waste , Silver , Gold , Temperature , Recycling
18.
J Environ Manage ; 350: 119654, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38016232

ABSTRACT

China has implemented policies like Leading areas for Agricultural Green Development (LAGD) to mitigate livestock and poultry farming pollution while promoting industry growth. However, it remains uncertain whether LAGDs have successfully balanced emission reduction with stable development. This study examines 165 LAGDs to analyze changes in emissions, assess the decoupling of emission reduction from output value, and identify influencing factors. Findings reveal that emissions from livestock and poultry in LAGDs initially increased and then decreased between 2010 and 2019. Cattle were responsible for over 40% of fecal emissions, and pigs for more than 20%. Additionally, pigs contributed to over 61% of urine emissions. From 2010 to 2014, increases in chemical oxygen demand were mainly due to pigs and cattle. Total nitrogen levels were significantly impacted by cattle, while pigs were affected by total phosphorus. From 2014 to 2019, reductions in emissions were largely attributed to a decrease in pig-related pollutants. The decoupling status shifted from strong to weak and then back to strong between 2014 and 2019. Production efficiency played a crucial role in reducing emissions, while changes in industrial structure moved from supporting to hindering this reduction. Economic development was a primary factor in driving these changes. Standard emissions in Chinese regions showed a rising and then declining trend from 2010 to 2019. The Northeast and Northwest regions of China demonstrated emission trends that were in sync with the growth in rural income. This study offers insights into the successes and challenges of LAGDs in achieving a balance between reduced emissions and development, using quantitative analysis. The findings are instrumental in informing policies for a sustainable livestock and poultry industry. Recommendations include evaluating coordinated approaches to pollution reduction and industrial growth, setting decoupling goals, designing policies based on influential factors, conducting regional assessments of livestock and poultry demand, and implementing region-specific strategies.


Subject(s)
Livestock , Poultry , Animals , Cattle , Agriculture , China , Biological Oxygen Demand Analysis , Economic Development , Carbon Dioxide
19.
J Ethnopharmacol ; 323: 117611, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158095

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bacterial resistance to antibiotics is a growing global concern, highlighting the urgent need for new antimicrobial candidates. Aframomum melegueta was traditionally used for combating urinary tract and soft tissue infections, which implies its potential as an antimicrobial agent. AIM OF STUDY: This study was designed to explore the antibacterial and anti-virulence capabilities of 4-shogaol isolated from A. melegueta seeds versus gram-negative bacteria: Serratia marcescens, Klebsiella pneumoniae, Acinetobacter baumannii, and the clinically important pathogen Pseudomonas aeruginosa. MATERIALS AND METHODS: 4-Shogeol was isolated from A. melegueta seeds and its MICs were determined for Acinetobacter baumannii (ATCC-17978), Pseudomonas aeruginosa (ATCC-27853), Klebsiella pneumoniae (ATCC-700603), and Serratia marcescens clinical isolate. The anti-efflux activity and effect on the bacterial cell membrane for the compound were evaluated. Furthermore, the anti-virulence activities of the compound were evaluated. The effects of 4-shogeol at sub-MIC on bacterial motility, biofilm formation, and production of virulent enzymes and pigments were assessed. The anti-quorum sensing activities of 4-shogeol were evaluated virtually and by quantification its effect on the expression of quorum sensing encoding genes. The in vivo protection assay was conducted to evaluate the effect of 4-shogaol on the P. aeruginosa capacity to induce pathogenesis in mice. Finally, the effect of shogaol-antibiotics combination was assessed. RESULTS: The research revealed that 4-shogaol's antibacterial action primarily involves disrupting the bacterial cell membrane and efflux pumps. It also exhibited significant anti-virulence effects by reducing biofilm development and repressing virulence factors production, effectively protecting mice against P. aeruginosa infection. Furthermore, when combined with antibiotics, 4-shogaol demonstrated synergistic effects, leading to reduced minimum inhibitory concentrations (MICs) against P. aeruginosa. Its anti-virulence properties were linked to its ability to disrupt bacterial quorum sensing (QS) mechanisms, as evidenced by its interaction with QS receptors and downregulation of QS-related genes. Notably, in silico analysis indicated that 4-shogaol exhibited strong binding affinity to different P. aeruginosa QS targets. CONCLUSION: These findings suggest that 4-shogaol holds promise as an effective anti-virulence agent that can be utilized in combination with antibiotics for treating severe infections caused by gram-positive bacteria.


Subject(s)
Anti-Infective Agents , Biofilms , Catechols , Mice , Animals , Anti-Infective Agents/pharmacology , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Virulence Factors/metabolism , Gram-Negative Bacteria , Bacteria , Pseudomonas aeruginosa
20.
J Biomol Struct Dyn ; : 1-12, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38116740

ABSTRACT

Extraction and fractionation of Barleria trispinosa growing in Saudi Arabia yielded four iridoid compounds identified by spectroscopic techniques as acetylbarlerin (1), barlerin (2), shanzhiside methyl ester (3) and 6-⍺-L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester (4). Preliminary experiments confirmed that compound 1 acts as an inducer of chemopreventive NAD(P)H:Quinone oxidoreductase 1 (NQO1) enzymatic activity in a murine hepatoma (Hepa1c1c7) chemoprevention model. It also demonstrated the ability to inhibit the lipopolysaccharides (LPS)-induced nitric oxide (NO) production in the RAW264.7 macrophage model. Western blotting revealed the ability of compound 1 to up-regulate the protein expression of the NQO1 marker. Furthermore, compound 1 elicited NO suppression in RAW264.7 macrophages by inhibiting iNOS protein expression. Molecular docking and molecular simulation studies of 1 supported its experimental results as an inhibitor of the nuclear factor erythroid 2-Kelch-like ECH-associated protein 1 (Nrf2-KEAP1) complex, resulting in Nrf2-mediated induction of chemopreventive NQO1.Communicated by Ramaswamy H. Sarma.

SELECTION OF CITATIONS
SEARCH DETAIL