Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 17015, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39043765

ABSTRACT

This study investigates how dynamic fluctuations in matrix stiffness affect the behavior of cardiac fibroblasts (CFs) within a three-dimensional (3D) hydrogel environment. Using hybrid hydrogels with tunable stiffness, we created an in vitro model to mimic the varying stiffness of the cardiac microenvironment. By manipulating hydrogel stiffness, we examined CF responses, particularly the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation. Our findings reveal that increased matrix stiffness promotes the differentiation of CFs into myofibroblasts, while matrix softening reverses this process. Additionally, we identified the role of focal adhesions and integrin ß1 in mediating stiffness-induced phenotypic switching. This study provides significant insights into the mechanobiology of cardiac fibrosis and suggests that modulating matrix stiffness could be a potential therapeutic strategy for treating cardiovascular diseases.


Subject(s)
Cell Differentiation , Extracellular Matrix , Fibroblasts , Hydrogels , Myofibroblasts , Phenotype , Hydrogels/chemistry , Extracellular Matrix/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , Myofibroblasts/metabolism , Myofibroblasts/cytology , Integrin beta1/metabolism , Focal Adhesions/metabolism , Myocardium/cytology , Myocardium/metabolism , Cells, Cultured , Rats , Actins/metabolism
2.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561669

ABSTRACT

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Subject(s)
Extracellular Vesicles , Urinary Bladder Neoplasms , Animals , Mice , Extracellular Vesicles/metabolism , Glycoconjugates , Integrin beta1/metabolism , Mammals , N-Acetylneuraminic Acid/metabolism , Sialic Acids/metabolism
3.
Heliyon ; 10(6): e27148, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500982

ABSTRACT

Breast cancer (BC) remains a significant global health threat, with triple-negative breast cancer (TNBC) standing out as a particularly aggressive subtype lacking targeted therapies. Addressing this gap, we propose Quiescin Q6 sulfhydryl oxidase 2 (QSOX2) as a potential therapeutic target, a disulfide bond-forming enzyme implicated in cancer progression. Using publicly available datasets, we conducted a comprehensive analysis of QSOX2 expression in BC tumor and non-tumor tissues, assessing its specificity across different molecular subtypes. We further explored correlations between QSOX2 expression and patient outcomes, utilizing datasets like TCGA and METABRIC. In addition, we performed in vitro experiments to evaluate QSOX2 expression in BC cell lines and investigate the effects of QSOX2 knockdown on various TNBC cellular processes, including cell proliferation, apoptosis resistance, migration, and the epithelial-to-mesenchymal transition (EMT). Our results reveal significantly elevated QSOX2 expression in BC tumor tissues, particularly in TNBC, and establish an association between high QSOX2 expression and increased patient mortality, cancer progression, and recurrence across various BC subtypes. Notably, QSOX2 knockdown in TNBC cell lines reduces cell proliferation, enhances apoptosis, and suppresses migration, potentially mediated through its influence on the EMT process. Furthermore, we identify a significant link between QSOX2 and integrin ß1 (ITGB1), suggesting that QSOX2 enhances ITGB1 stability, subsequently exacerbating the malignancy of TNBC. In conclusion, elevated QSOX2 expression emerges as a key factor associated with adverse patient outcomes in BC, particularly in TNBC, contributing to disease progression through various mechanisms, including the modulation of ITGB1 stability. Our findings underscore the potential of targeting QSOX2 as a therapeutic strategy for improving patient prognoses not only in TNBC but also in other BC subtypes.

4.
Regen Biomater ; 11: rbae017, 2024.
Article in English | MEDLINE | ID: mdl-38525326

ABSTRACT

Cartilage defects may lead to severe degenerative joint diseases. Tissue engineering based on type I collagen hydrogel that has chondrogenic potential is ideal for cartilage repair. However, the underlying mechanisms of chondrogenic differentiation driven by type I collagen hydrogel have not been fully clarified. Herein, we explored potential collagen receptors and chondrogenic signaling pathways through bioinformatical analysis to investigate the mechanism of collagen-induced chondrogenesis. Results showed that the super enhancer-related genes induced by collagen hydrogel were significantly enriched in the TGF-ß signaling pathway, and integrin-ß1 (ITGB1), a receptor of collagen, was highly expressed in bone marrow mesenchymal stem cells (BMSCs). Further analysis showed genes such as COL2A1 and Tenascin C (TNC) that interacted with ITGB1 were significantly enriched in extracellular matrix (ECM) structural constituents in the chondrogenic induction group. Knockdown of ITGB1 led to the downregulation of cartilage-specific genes (SOX9, ACAN, COL2A1), SMAD2 and TNC, as well as the downregulation of phosphorylation of SMAD2/3. Knockdown of TNC also resulted in the decrease of cartilage markers, ITGB1 and the SMAD2/3 phosphorylation but overexpression of TNC showed the opposite trend. Finally, in vitro and in vivo experiments confirmed the involvement of ITGB1 and TNC in collagen-mediated chondrogenic differentiation and cartilage regeneration. In summary, we demonstrated that ITGB1 was a crucial receptor for chondrogenic differentiation of BMSCs induced by collagen hydrogel. It can activate TGF-SMAD2/3 signaling, followed by impacting TNC expression, which in turn promotes the interaction of ITGB1 and TGF-SMAD2/3 signaling to enhance chondrogenesis. These may provide concernful support for cartilage tissue engineering and biomaterials development.

5.
J Biochem Mol Toxicol ; 38(4): e23688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511888

ABSTRACT

In women, breast cancer (BC) accounts for 7%-10% of all cancer cases and is one of the most common cancers. To identify a new method for treating BC, the role of CD93 and its underlying mechanism were explored. MDA-MB-231 cells were used in this study and transfected with si-CD93, si-MMRN2, oe-CD93, si-integrin ß1, or oe-SP2 lentivirus. After MDA-MB-231 cells were transfected with si-NC or si-CD93, they were injected into nude mice by subcutaneous injection at a dose of 5 × 106/mouse to construct a BC animal model. The expression of genes and proteins and cell migration, invasion and vasculogenic mimicry were detected by RT‒qPCR, western blot, immunohistochemistry, immunofluorescence, Transwell, and angiogenesis assays. In pathological samples and BC cell lines, CD93 was highly expressed. Functionally, CD93 promoted the proliferation, migration, and vasculogenic mimicry of MDA-MB-231 cells. Moreover, CD93 interacts with MMRN2 and integrin ß1. Knockdown of CD93 and MMRN2 can inhibit the activation of integrin ß1, thereby inhibiting the PI3K/AKT/SP2 signaling pathway and inhibiting BC growth and vasculogenic mimicry. In conclusion, the binding of CD93 to MMRN2 can activate integrin ß1, thereby activating the PI3K/AKT/SP2 signaling pathway and subsequently promoting BC growth and vasculogenic mimicry.


Subject(s)
Breast Neoplasms , Integrin beta1 , Membrane Glycoproteins , Receptors, Complement , Animals , Female , Humans , Mice , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Integrin beta1/genetics , Integrin beta1/metabolism , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Receptors, Complement/metabolism , Membrane Glycoproteins/metabolism
6.
Placenta ; 149: 18-28, 2024 04.
Article in English | MEDLINE | ID: mdl-38490094

ABSTRACT

INTRODUCTION: Gestational trophoblastic disease (GTD) encompasses a spectrum of rare pre-malignant and malignant entities originating from trophoblastic tissue, including partial hydatidiform mole, complete hydatidiform mole and choriocarcinoma. ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1), the primary sialyltransferase responsible for the addition of α2,6 sialic acids, is strongly associated with the occurrence and development of several tumor types. However, the role of ST6Gal1/α2,6 -sialylation of trophoblast cells in GTD is still not well understood. METHODS: The expression of ST6Gal1 was investigated in GTD and human immortalized trophoblastic HTR-8/SVneo cells and human gestational choriocarcinoma JAR cells. We evaluated the effect of ST6Gal1 on proliferation and stemness of trophoblastic cells. We also examined the effect of internal miR-199a-5p on ST6Gal1 expression. The role of ST6Gal1 in regulating α2,6-sialylated integrin ß1 and its significance in the activation of integrin ß1/focal adhesion kinase (FAK) signaling pathway were also explored. RESULTS: ST6Gal1 was observed to be highly expressed in GTD. Overexpression of ST6Gal1 promoted the proliferation and stemness of HTR-8/SVneo cells, whereas knockdown of ST6Gal1 suppressed the viability and stemness of JAR cells. MiR-199a-5p targeted and inhibited the expression of ST6Gal1 in trophoblastic cells. In addition, we revealed integrin ß1 was highly α2,6-sialylated in JAR cells. Inhibition of ST6Gal1 reduced α2,6-sialylation on integrin ß1 and suppressed the integrin ß1/FAK pathway in JAR cells, thereby affecting its biological functions. DISCUSSION: This study demonstrated that ST6Gal1 plays important roles in promoting proliferation and stemness through the integrin ß1 signaling pathway in GTD. Therefore, ST6Gal1 may have a potential role in the occurrence and development of GTD.


Subject(s)
Choriocarcinoma , Gestational Trophoblastic Disease , Integrin beta1 , MicroRNAs , Female , Humans , Pregnancy , Cell Proliferation , Choriocarcinoma/pathology , Integrin beta1/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism
7.
Cell Rep ; 43(2): 113796, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38367240

ABSTRACT

The acidic metabolic byproducts within the tumor microenvironment (TME) hinder T cell effector functions. However, their effects on T cell infiltration remain largely unexplored. Leveraging the comprehensive The Cancer Genome Atlas dataset, we pinpoint 16 genes that correlate with extracellular acidification and establish a metric known as the "tumor acidity (TuAci) score" for individual patients. We consistently observe a negative association between the TuAci score and T lymphocyte score (T score) across various human cancer types. Mechanistically, extracellular acidification significantly impedes T cell motility by suppressing podosome formation. This phenomenon can be attributed to the reduced expression of methyltransferase-like 3 (METTL3) and the modification of RNA N6-methyladenosine (m6A), resulting in a subsequent decrease in the expression of integrin ß1 (ITGB1). Importantly, enforced ITGB1 expression leads to enhanced T cell infiltration and improved antitumor activity. Our study suggests that modulating METTL3 activity or boosting ITGB1 expression could augment T cell infiltration within the acidic TME, thereby improving the efficacy of cell therapy.


Subject(s)
Integrin beta1 , Neoplasms , Humans , Cell- and Tissue-Based Therapy , Hydrogen-Ion Concentration , Integrin beta1/genetics , Methyltransferases/genetics , T-Lymphocytes , Tumor Microenvironment
8.
Int J Mol Sci ; 25(2)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255903

ABSTRACT

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metapneumovirus , Humans , Animals , Cats , Swine , Metapneumovirus/genetics , Integrin beta1/genetics , Chickens , Antibodies, Viral
9.
Int J Biol Sci ; 20(1): 265-279, 2024.
Article in English | MEDLINE | ID: mdl-38164180

ABSTRACT

Endometrial carcinoma (EC) is a common type of uterine cancer in developed countries, originating from the uterine epithelium. The incidence rate of EC in Taiwan has doubled from 2005. Cancer stem cells (CSCs) are a subpopulation of cancer cells that have high tumorigenicity and play a crucial role in the malignant processes of cancer. Targeting molecules associated with CSCs is essential for effective cancer treatments. This study delves into the role of Exosome component 5 (EXOSC5) in EC. Data from The Cancer Genome Atlas suggests a correlation between high EXOSC5 mRNA expression and unfavorable EC prognosis. EXOSC5 knockdown diminished EC-CSC self-renewal and reduced expression of key cancer stemness proteins, including c-MYC and SOX2. Intriguingly, this knockdown significantly curtailed tumorigenicity and CSC frequency in EC tumor spheres. A mechanistic examination revealed a reduction in netrin4 (NTN4) levels in EXOSC5-depleted EC cells. Moreover, NTN4 treatment amplified EC cell CSC activity and, when secreted, NTN4 partnered with integrin ß1, subsequently triggering the FAK/SRC axis to elevate c-MYC activity. A clear positive relation between EXOSC5 and NTN4 was evident in 93 EC tissues. In conclusion, EXOSC5 augments NTN4 expression, activating c-MYC via the integrin ß1/FAK/SRC pathway, offering potential avenues for EC diagnosis and treatment.


Subject(s)
Endometrial Neoplasms , Integrin beta1 , Humans , Female , Integrin beta1/metabolism , Signal Transduction/genetics , Endometrial Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Cell Line, Tumor , Antigens, Neoplasm/metabolism , RNA-Binding Proteins/metabolism , Exosome Multienzyme Ribonuclease Complex/metabolism , Netrins/metabolism
10.
Neuro Oncol ; 26(1): 137-152, 2024 01 05.
Article in English | MEDLINE | ID: mdl-37555799

ABSTRACT

BACKGROUND: Approximately 35% of pituitary adenoma (PA) display an aggressive profile, resulting in low surgical total resection rates, high recurrence rates, and worse prognosis. However, the molecular mechanism of PA invasion remains poorly understood. Although "a disintegrin and metalloproteinases" (ADAMs) are associated with the progression of many tumors, there are no reports on ADAM22 in PA. METHODS: PA transcriptomics databases and clinical specimens were used to analyze the expression of ADAM22. PA cell lines overexpressing wild-type ADAM22, the point mutation ADAM22, the mutated ADAM22 without disintegrin domain, and knocking down ADAM22 were generated. Cell proliferation/invasion assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, mass spectrometry, Reverse transcription-quantitative real-time PCR, phos-tag SDS-PAGE, and Western blot were performed for function and mechanism research. Nude mice xenograft models and rat prolactinoma orthotopic models were used to validate in vitro findings. RESULTS: ADAM22 was significantly overexpressed in PA and could promote the proliferation, migration, and invasion of PA cells. ADAM22 interacted with integrin ß1 (ITGB1) and activated FAK/PI3K and FAK/ERK signaling pathways through its disintegrin domain to promote PA progression. ADAM22 was phosphorylated by PKA and recruited 14-3-3, thereby delaying its degradation. ITGB1-targeted inhibitor (anti-itgb1) exerted antitumor effects and synergistic effects in combination with somatostatin analogs or dopamine agonists in treating PA. CONCLUSIONS: ADAM22 was upregulated in PA and was able to promote PA proliferation, migration, and invasion by activating ITGB1 signaling. PKA may regulate the degradation of ADAM22 through post-transcriptional modification levels. ITGB1 may be a potential therapeutic target for PA.


Subject(s)
Disintegrins , Pituitary Neoplasms , Mice , Humans , Animals , Rats , Integrin beta1/metabolism , Mice, Nude , Metalloproteases , Cell Line, Tumor , Cell Movement , Cell Proliferation
11.
Int J Mol Med ; 53(2)2024 02.
Article in English | MEDLINE | ID: mdl-38063256

ABSTRACT

The Kv11.1 potassium channel encoded by the Kcnh2 gene is crucial in conducting the rapid delayed rectifier K+ current in cardiomyocytes. Homozygous mutation in Kcnh2 is embryonically lethal in humans and mice. However, the molecular signaling pathway of intrauterine fetal loss is unclear. The present study generated a Kcnh2 knockout rat based on edited rat embryonic stem cells (rESCs). Kcnh2 knockout was embryonic lethal on day 11.5 of development due to a heart configuration defect. Experiments with human embryonic heart single cells (6.5­7 weeks post­conception) suggested that potassium voltage­gated channel subfamily H member 2 (KCNH2) plays a crucial role in the development of compact cardiomyocytes. By contrast, apoptosis was found to be triggered in the homozygous embryos, which could be attributed to the failure of KCNH2 to form a complex with integrin ß1 that was essential for preventing the process of apoptosis via inhibition of forkhead box O3A. Destruction of the KCNH2/integrin ß1 complex reduced the phosphorylation level of AKT and deactivated the glycogen synthase kinase 3 ß (GSK­3ß)/ß­catenin pathway, which caused early developmental abnormalities in rats. The present work reveals a basic mechanism by which KCNH2 maintains intact embryonic heart development.


Subject(s)
ERG1 Potassium Channel , Heart Defects, Congenital , Animals , Female , Humans , Mice , Pregnancy , Rats , Embryonic Development , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Heart Defects, Congenital/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Myocytes, Cardiac/metabolism
12.
Cancer Lett ; 582: 216597, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38145655

ABSTRACT

Growing evidence has suggested that increased matrix stiffness can significantly strengthen the malignant characteristics of hepatocellular carcinoma (HCC) cells. However, whether and how increased matrix stiffness regulates the formation of invadopodia in HCC cells remain largely unknown. In the study, we developed different experimental systems in vitro and in vivo to explore the effects of matrix stiffness on the formation of invadopodia and its relevant molecular mechanism. Our results demonstrated that increased matrix stiffness remarkably augmented the migration and invasion abilities of HCC cells, upregulated the expressions of invadopodia-associated genes and enhanced the number of invadopodia. Two regulatory pathways contribute to matrix stiffness-driven invadopodia formation together in HCC cells, including direct triggering invadopodia formation through activating integrin ß1 or Piezo1/ FAK/Src/Arg/cortactin pathway, and indirect stimulating invadopodia formation through improving EGF production to activate EGFR/Src/Arg/cortactin pathway. Src was identified as the common hub molecule of two synergistic regulatory pathways. Simultaneously, activation of integrin ß1/RhoA/ROCK1/MLC2 and Piezo1/Ca2+/MLCK/MLC2 pathways mediate matrix stiffness-reinforced cell migration. This study uncovers a new mechanism by which mechanosensory pathway and biochemical signal pathway synergistically regulate the formation of invadopodia in HCC cells.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Podosomes , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cortactin/metabolism , Podosomes/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Integrin beta1/metabolism , Extracellular Matrix/metabolism , Cell Line, Tumor , Neoplasm Invasiveness , rho-Associated Kinases/metabolism
13.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139195

ABSTRACT

Heart failure and cancer are currently the deadliest diseases in the Western world, posing the most pressing clinical challenges that remain unmet today. Both conditions share similar risk factors, including age, genetics, lifestyle, chronic inflammation, stress, and more. Furthermore, medications that are being used to counteract cancer frequently result in cardiotoxicity and the spontaneous emergence of heart failure. Thus, heart failure and cancer display an intimate connection and share similarities. Recent studies show that cardiac remodeling and heart failure promote cancer progression and metastasis. Using three different mouse models for heart failure revealed that the communication between the remodeled heart and the tumor is facilitated through multiple secreted factors. Among these factors, Periostin was consistently found to be elevated in all models and was shown to be required in vitro. Yet, whether Periostin is necessary for tumor promotion in vivo is unknown. Towards this end, we examined tumor promotion in mice lacking Periostin following transverse aortic constriction (TAC). Despite the loss of Periostin, tumor growth was promoted in the TAC-operated mice. This likely occurred due to increased levels of various cytokines and growth factors in Periostin KO mice. Many of these factors are potential ligands of Integrin receptors. Therefore, we next studied the role of Integrin receptors in the tumor-promotion phenotype following heart failure. We generated cancer cells with an Integrin ß1 loss of function mutation and examined tumor growth in the presence and absence of heart failure. Integrin ß1 KO cancer cells fail to display cardiac-remodeling-dependent tumor-promotion. Interestingly, a previous study showed that renal cell carcinoma cells (Renca) fail to be promoted following a myocardial infarction. Consistently, we show that Renca cells do not respond to secreted factors derived from the failing heart both in vitro and in vivo. Interestingly, Renca cells display low basal mRNA levels of Integrin ß1 which may explain the inability of heart failure to promote their growth. The findings may have significant clinical relevance to cardio-oncology patients who suffer from cancers with high levels of Integrin ß1. Chemotherapy leading to cardiotoxicity in these patients may generate a vicious cycle with poor prognosis.


Subject(s)
Heart Failure , Integrin beta1 , Neoplasms , Animals , Humans , Mice , Cardiotoxicity , Heart Failure/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Myocardial Infarction/metabolism , Neoplasms/metabolism
14.
Med Oncol ; 41(1): 33, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38150085

ABSTRACT

Cisplatin-based chemotherapy is the main treatment option for advanced or metastatic esophageal squamous cell carcinoma (ESCC). However, most ESCC patients develop drug resistance within 2 years after receiving cisplatin chemotherapy. Ubiquitin-specific protease 10 (USP10) is abnormally expressed in a variety of cancers, but the mechanistic roles of USP10 in ESCC are still obscure. Here, the effects of USP10 on the migration and cisplatin resistance of ESCC in vivo and in vitro and the underlying mechanisms have been investigated by bioinformatics analysis, RT-PCR, western blotting, immunoprecipitation, immunohistochemistry, cell migration and MTS cell proliferation assays, deubiquitination assay, and mouse tail vein injection model. USP10 was significantly up-regulated in ESCC tissues compared with adjacent normal tissues in both public databases and clinical samples and was closely associated with overall survival. Subsequent results revealed that USP10 contributed to the migration and cisplatin resistance of ESCC cells, while knocking down USP10 in cisplatin-resistant cells exhibited opposite effects in vitro and in vivo. Further Co-IP experiments showed that integrin ß1 and YAP might be targets for USP10 deubiquitination. Moreover, deficiency of USP10 significantly inhibited the migrative and chemo-resistant abilities of ESCC cells, which could be majorly reversed by integrin ß1 or YAP reconstitution. Altogether, USP10 was required for migration and cisplatin resistance in ESCC through deubiquinating and stabilizing integrin ß1/YAP, highlighting that inhibition of USP10 may be a potential therapeutic strategy for ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Mice , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Cisplatin/pharmacology , Esophageal Neoplasms/drug therapy , Integrin beta1 , Cell Movement , Disease Models, Animal , Ubiquitin Thiolesterase/genetics
15.
Mol Neurobiol ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010560

ABSTRACT

Memory problems are often the first signs of cognitive impairment related to Alzheimer's disease (AD), and stem cells and stem cell-derived exosomes (EXOs) have been studied for their therapeutic potential to improve the disease signs. While many studies have shown the anti-inflammatory and immunomodulatory effects of stem cells and exosomes on improving memory in different AD models, there is still insufficient data to determine how they modulate neural plasticity to enhance spatial memory and learning ability. Therefore, we conducted a study to investigate the effects of exosomes derived from 3D-cultured human Unrestricted Somatic Stem Cells (hUSSCs) on spatial memory and neuroplasticity markers in a sporadic rat model of AD. Using male Wistar rats induced by intracerebral ventricle injection of streptozotocin, we demonstrated that intranasal administration of hUSSC-derived exosomes could decrease Aß accumulation and improve learning and memory in the Morris water maze test. We also observed an increase in the expression of pre-synaptic and post-synaptic molecules involved in neuronal plasticity, including NMDAR1, integrin ß1, synaptophysin, pPKCα, and GAP-43, in the hippocampus. Our findings suggest that intranasal administration of exosomes can ameliorate spatial learning and memory deficits in rats, at least in part, by increasing the expression of neuroplasticity proteins. These results may encourage researchers to further investigate the molecular pathways involved in memory improvement after stem cell and exosome therapy, with the goal of increasing the efficacy and safety of exosome-based treatments for AD.

16.
J Transl Med ; 21(1): 787, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37932738

ABSTRACT

Integrins, which consist of two non-covalently linked α and ß subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin ß1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin ß1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin ß1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin ß1 and signaling pathways which underlie the involvement of integrin ß1 in several malignant cancers. Our review suggests the possibility of using integrin ß1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.


Subject(s)
Integrin beta1 , Neoplasms , Humans , Cell Adhesion , Extracellular Matrix/metabolism , Integrin beta1/metabolism , Integrins/metabolism , Neoplasms/metabolism
18.
Tissue Cell ; 85: 102235, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37826960

ABSTRACT

AIM: To demonstrate the role and mechanism of luteolin in radio-sensitization and angiogenesis of laryngeal cancer. METHODS: Firstly, we analyzed the cytotoxicity of Luteolin and radiation sensitive cytotoxicity through CCK8, and selected subsequent radiation doses and Luteolin concentrations. Next, we further analyzed the effects of Luteolin on radiation sensitivity and neovascularization of laryngeal cancer, and conducted CCK8, plate cloning, and angiogenesis experiments, respectively. At the same time, the effects of individual treatment and combination treatment on the expression of Integrin ß1 and VEGFA were analyzed through immunofluorescence analysis. We also analyzed the regulation of Integrin ß1 protein expression by Luteolin through Western blot. To investigate the mechanism of Integrin ß1, we transfected overexpressed and silenced Integrin ß1 vectors and analyzed the role of Integrin ß1 in Luteolin enhancing radiation sensitivity of laryngeal cancer by repeating the above experiments. We have also constructed an in vivo subcutaneous tumor transplantation model to further validate the cell experimental results. The expression of Integrin, KI67, VEGFA, and CD31 was analyzed through Western blot and immunohistochemistry experiments. RESULTS: Radiation inhibited cell proliferation and decreased Integrin ß1 expression, and increased the radiosensitivity through inhibiting cell proliferation, and inhibit angiogenesis during radiation. Overexpression of Integrin ß1 weakened radiotherapy sensitivity on the basis of cells treated with combined administration. Integrin ß1 is considered as the downstream molecule of luteolin, participating in radiosensitivity of luteolin to FaDu cells. Animal experiments also demonstrated that luteolin strengthened tumor suppression and anti-angiogenesis during radiation via Integrin ß1. CONCLUSION: In summary, our results manifested that radio-sensitivity effect of luteolin depended on downregulating Integrin ß1 in laryngocarcinoma.


Subject(s)
Integrin beta1 , Laryngeal Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Integrin beta1/genetics , Integrin beta1/metabolism , Integrin beta1/pharmacology , Laryngeal Neoplasms/drug therapy , Laryngeal Neoplasms/radiotherapy , Luteolin/pharmacology , Radiation Tolerance , Humans
19.
J Thromb Haemost ; 21(12): 3619-3632, 2023 12.
Article in English | MEDLINE | ID: mdl-37678551

ABSTRACT

BACKGROUND: Upon vessel injury, platelets adhere to exposed matrix constituents via specific membrane receptors, including the von Willebrand factor receptor glycoprotein (GP)Ib-IX-V complex and integrins ß1 and ß3. In platelets, the Fes/CIP4-homology Bin-Amphiphysin-Rvs protein PACSIN2 associates with the cytoskeletal and scaffolding protein filamin A (FlnA), linking GPIbα and integrins to the cytoskeleton. OBJECTIVES: Here we investigated the role of PACSIN2 in platelet function. METHODS: Platelet parameters were evaluated in mice lacking PACSIN2 and platelet integrin ß1. RESULTS: Pacsin2-/- mice displayed mild thrombocytopenia, prolonged bleeding time, and delayed thrombus formation in a ferric chloride-mediated carotid artery injury model, which was normalized by injection of control platelets. Pacsin2-/- platelets formed unstable thrombi that embolized abruptly in a laser-induced cremaster muscle injury model. Pacsin2-/- platelets had hyperactive integrin ß1, as evidenced by increased spreading onto surfaces coated with the collagen receptor α2ß1-specific peptide GFOGER and increased binding of the antibody 9EG7 directed against active integrin ß1. By contrast, Pacsin2-/- platelets had normal integrin αIIbß3 function and expressed P-selectin normally following stimulation through the collagen receptor GPVI or with thrombin. Deletion of platelet integrin ß1 in Pacsin2-/- mice normalized platelet count, hemostasis, and thrombus formation. A PACSIN2 peptide mimicking the FlnA-binding site mediated the pull-down of a FlnA rod 2 construct by integrin ß7, a model for integrin ß-subunits. CONCLUSIONS: Pacsin2-/- mice displayed severe thrombus formation defects due to hyperactive platelet integrin ß1. The data suggest that PACSIN2 binding to FlnA negatively regulates platelet integrin ß1 hemostatic function.


Subject(s)
Integrin beta1 , Platelet Activation , Thrombosis , Animals , Mice , Blood Platelets/metabolism , Hemostasis , Hemostatics/metabolism , Integrin beta1/metabolism , Peptides/pharmacology , Platelet Adhesiveness , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Membrane Glycoproteins/metabolism , Receptors, Collagen/metabolism , Thrombosis/metabolism
20.
Open Life Sci ; 18(1): 20220716, 2023.
Article in English | MEDLINE | ID: mdl-37744455

ABSTRACT

The extracellular matrix (ECM) has been strongly correlated with cancer progression in various tumor types. However, the specific mechanisms underlying ECM-associated tumor behaviors remain unclear. In this study, we found an enriched distribution of fibrin in tumor tissues obtained from high-grade non-small cell lung cancer (NSCLC) patients. For further investigation, we established an in vitro 3D culture system using fibrin gel and found that NSCLC cells grown in this system exhibited increased stemness and tumorigenesis. Mechanistically, we demonstrated that fibrin facilitated the activation of the phosphatase and tensin homolog (PTEN)/protein kinase B (AKT) signaling pathway through integrin ß1. Furthermore, we found that blocking integrin ß1 signals enhanced the tumor suppressive effects of chemotherapy, providing a novel approach for clinical therapy for NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL