Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Data Brief ; 48: 109269, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383780

ABSTRACT

This data article presents a simulation model based on quantum mechanics and energy potentials for obtaining simulation data that allows, from the perspective of materials informatics, the prediction of the electrodeposition mechanism for forming nanostructured metallic coatings. The development of the research is divided into two parts i) the formulation (Quantum mechanical model and Corrected model for electron prediction; using a modified Schrödinger equation) and ii) the implementation of the theoretical prediction model (Discretization of the model). For the simulation process, the finite element method (FEM) was used considering the equation of electric potential and electroneutrality with and without the inclusion of quantum leap. We also provide the code to perform QM simulations in CUDA®, and COMSOL® software, the simulation parameters, and data for two metallic arrangements of chromium nanoparticles (CrNPs) electrodeposited on commercial steel substrate. (CrNPs-AISI 1020 steel and CrNPs-A618 steel). Data collection shows the direct relationship between applied potential (VDC), current (A), concentration (ppm), and time (s) for the homogeneous formation of the coating during the electrodeposition process, as estimated by the theoretical model developed. Their potential reuse data is done to establish the precision of the theoretical model in predicting the formation and growth of nanostructured surface coatings with metallic nanoparticles to give surface-mechanical properties.

2.
Nano Lett ; 23(11): 4854-4861, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37235539

ABSTRACT

Magnetic skyrmions are prime candidates for the next generation of spintronic devices. Skyrmions and other topological magnetic structures are known to be stabilized by the Dzyaloshinskii-Moriya interaction (DMI) that occurs when the inversion symmetry is broken in thin films. Here, we show by first-principles calculations and atomistic spin dynamics simulations that metastable skyrmionic states can also be found in nominally symmetric multilayered systems. We demonstrate that this is correlated with the large enhancement of the DMI strength due to the presence of local defects. In particular, we find that metastable skyrmions can occur in Pd/Co/Pd multilayers without external magnetic fields and can be stable even near room temperature conditions. Our theoretical findings corroborate with magnetic force microscopy images and X-ray magnetic circular dichroism measurements and highlight the possibility of tuning the intensity of DMI by using interdiffusion at thin film interfaces.

SELECTION OF CITATIONS
SEARCH DETAIL