Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Methods Enzymol ; 702: 189-214, 2024.
Article in English | MEDLINE | ID: mdl-39155111

ABSTRACT

The C-diazeniumdiolate (N-nitrosohydroxylamine) group in the amino acid graminine (Gra) is a newly discovered Fe(III) ligand in microbial siderophores. Graminine was first identified in the siderophore gramibactin, and since this discovery, other Gra-containing siderophores have been identified, including megapolibactins, plantaribactin, gladiobactin, trinickiabactin (gramibactin B), and tistrellabactins. The C-diazeniumdiolate is photoreactive in UV light which provides a convenient characterization tool for this type of siderophore. This report details the process of genomics-driven identification of bacteria producing Gra-containing siderophores based on selected biosynthetic enzymes, as well as bacterial culturing, isolation and characterization of the C-diazeniumdiolate siderophores containing Gra.


Subject(s)
Siderophores , Siderophores/chemistry , Siderophores/isolation & purification , Siderophores/metabolism , Azo Compounds/chemistry , Azo Compounds/metabolism
2.
Biofilm ; 8: 100215, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39148892

ABSTRACT

Bacterial communication, Quorum Sensing (QS), is a target against virulence and prevention of antibiotic-resistant infections. 16 derivatives of Piperlongumine (PL), an amide alkaloid from Piper longum L., were screened for QS inhibition. PL-18 had the best QSI activity. PL-18 inhibited the lasR-lasI, rhlR-rhlI, and pqs QS systems of Pseudomonas aeruginosa. PL-18 inhibited pyocyanin and rhamnolipids that are QS-controlled virulence elements. Iron is an essential element for pathogenicity, biofilm formation and resilience in harsh environments, its uptake was inhibited by PL-18. Pl-18 significantly reduced the biofilm biovolume including in established biofilms. PL-18-coated silicon tubes significantly inhibited biofilm formation. The transcriptome study of treated P. aeruginosa showed that PL-18 indeed reduced the expression of QS and iron homeostasis related genes, and up regulated sulfur metabolism related genes. Altogether, PL-18 inhibits QS, virulence, iron uptake, and biofilm formation. Thus, PL-18 should be further developed against bacterial infection, antibiotic resistance, and biofilm formation.

3.
FASEB J ; 38(16): e23881, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39166718

ABSTRACT

During infection, the host employs nutritional immunity to restrict access to iron. Staphylococcus lugdunensis has been recognized for its ability to utilize host-derived heme to overcome iron restriction. However, the mechanism behind this process involves the release of hemoglobin from erythrocytes, and the hemolytic factors of S. lugdunensis remain poorly understood. S. lugdunensis encodes four phenol-soluble modulins (PSMs), short peptides with hemolytic activity. The peptides SLUSH A, SLUSH B, and SLUSH C are ß-type PSMs, and OrfX is an α-type PSM. Our study shows the SLUSH locus to be essential for the hemolytic phenotype of S. lugdunensis. All four peptides individually exhibited hemolytic activity against human and sheep erythrocytes, but synergism with sphingomyelinase was observed exclusively against sheep erythrocytes. Furthermore, our findings demonstrate that SLUSH is crucial for allowing the utilization of erythrocytes as the sole source of nutritional iron and confirm the transcriptional regulation of SLUSH by Agr. Additionally, our study reveals that SLUSH peptides stimulate the human immune system. Our analysis identifies SLUSH as a pivotal hemolytic factor of S. lugdunensis and demonstrates its concerted action with heme acquisition systems to overcome iron limitation in the presence of host erythrocytes.


Subject(s)
Erythrocytes , Hemolysis , Iron , Staphylococcus lugdunensis , Erythrocytes/metabolism , Staphylococcus lugdunensis/metabolism , Humans , Iron/metabolism , Animals , Sheep , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Peptides/metabolism , Peptides/chemistry , Staphylococcal Infections/microbiology , Staphylococcal Infections/metabolism , Bacterial Toxins
4.
J Agric Food Chem ; 72(33): 18455-18464, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39109629

ABSTRACT

Siderophores are small molecule iron chelators. The entomopathogenic fungus Beauveria bassiana produces a plethora of siderophores under iron-limiting conditions. In this study, a siderophore biosynthesis pathway, akin to the general pathway observed in filamentous fungi, was revealed in B. bassiana. Among the siderophore biosynthesis genes (SID), BbSidA was required for the production of most siderophores, and the SidC and SidD biosynthesis gene clusters were indispensable for the production of ferricrocin and fusarinine C, respectively. Biosynthesis genes play various roles in siderophore production, vegetative growth, stress resistance, development, and virulence, in which BbSidA plays the most important role. Accordingly, B. bassiana employs a cocktail of siderophores for iron metabolism, which is essential for fungal physiology and host interactions. This study provides the initial network for the genetic modification of siderophore biosynthesis, which not only aims to improve the efficacy of biocontrol agents but also ensures the efficient production of siderophores.


Subject(s)
Beauveria , Biosynthetic Pathways , Fungal Proteins , Siderophores , Beauveria/metabolism , Beauveria/genetics , Siderophores/metabolism , Siderophores/biosynthesis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Iron/metabolism , Animals , Insecta/microbiology , Multigene Family , Ferrichrome/analogs & derivatives
6.
Gut Microbes ; 16(1): 2369339, 2024.
Article in English | MEDLINE | ID: mdl-38962965

ABSTRACT

The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Oxidative Stress , Salmonella enterica , Animals , Iron/metabolism , Mice , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Salmonella enterica/genetics , Salmonella enterica/metabolism , Salmonella enterica/pathogenicity , Virulence/genetics , Phenols/metabolism , Thiazoles/metabolism , Humans , Salmonella Infections/microbiology , Gene Transfer, Horizontal , Female , Virulence Factors/genetics , Virulence Factors/metabolism , Plasmids/genetics
7.
Appl Environ Microbiol ; 90(8): e0051624, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39023267

ABSTRACT

Methanogens often inhabit sulfidic environments that favor the precipitation of transition metals such as iron (Fe) as metal sulfides, including mackinawite (FeS) and pyrite (FeS2). These metal sulfides have historically been considered biologically unavailable. Nonetheless, methanogens are commonly cultivated with sulfide (HS-) as a sulfur source, a condition that would be expected to favor metal precipitation and thus limit metal availability. Recent studies have shown that methanogens can access Fe and sulfur (S) from FeS and FeS2 to sustain growth. As such, medium supplied with FeS2 should lead to higher availability of transition metals when compared to medium supplied with HS-. Here, we examined how transition metal availability under sulfidic (i.e., cells provided with HS- as sole S source) versus non-sulfidic (cells provided with FeS2 as sole S source) conditions impact the metalloproteome of Methanosarcina barkeri Fusaro. To achieve this, we employed size exclusion chromatography coupled with inductively coupled plasma mass spectrometry and shotgun proteomics. Significant changes were observed in the composition and abundance of iron, cobalt, nickel, zinc, and molybdenum proteins. Among the differences were alterations in the stoichiometry and abundance of multisubunit protein complexes involved in methanogenesis and electron transport chains. Our data suggest that M. barkeri utilizes the minimal iron-sulfur cluster complex and canonical cysteine biosynthesis proteins when grown on FeS2 but uses the canonical Suf pathway in conjunction with the tRNA-Sep cysteine pathway for iron-sulfur cluster and cysteine biosynthesis under sulfidic growth conditions.IMPORTANCEProteins that catalyze biochemical reactions often require transition metals that can have a high affinity for sulfur, another required element for life. Thus, the availability of metals and sulfur are intertwined and can have large impacts on an organismismal biochemistry. Methanogens often occupy anoxic, sulfide-rich (euxinic) environments that favor the precipitation of transition metals as metal sulfides, thereby creating presumed metal limitation. Recently, several methanogens have been shown to acquire iron and sulfur from pyrite, an abundant iron-sulfide mineral that was traditionally considered to be unavailable to biology. The work presented here provides new insights into the distribution of metalloproteins, and metal uptake of Methanosarcina barkeri Fusaro grown under euxinic or pyritic growth conditions. Thorough characterizations of this methanogen under different metal and sulfur conditions increase our understanding of the influence of metal availability on methanogens, and presumably other anaerobes, that inhabit euxinic environments.


Subject(s)
Iron , Metalloproteins , Methanosarcina barkeri , Sulfides , Sulfur , Sulfur/metabolism , Iron/metabolism , Methanosarcina barkeri/metabolism , Methanosarcina barkeri/growth & development , Metalloproteins/metabolism , Sulfides/metabolism , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Minerals/metabolism , Proteomics
8.
mSphere ; 9(8): e0040724, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39078132

ABSTRACT

Bordetella pertussis infects the upper airways of humans and disarms host defense by the potent immuno-subversive activities of its pertussis (PT) and adenylate cyclase (CyaA) toxins. CyaA action near-instantly ablates the bactericidal activities of sentinel CR3-expressing myeloid phagocytes by hijacking cellular signaling pathways through the unregulated production of cAMP. Moreover, CyaA-elicited cAMP signaling also inhibits the macrophage colony-stimulating factor (M-CSF)-induced differentiation of incoming inflammatory monocytes into bactericidal macrophages. We show that CyaA/cAMP signaling via protein kinase A (PKA) downregulates the M-CSF-elicited expression of monocyte receptors for transferrin (CD71) and hemoglobin-haptoglobin (CD163), as well as the expression of heme oxygenase-1 (HO-1) involved in iron liberation from internalized heme. The impact of CyaA action on CD71 and CD163 levels in differentiating monocytes is largely alleviated by the histone deacetylase inhibitor trichostatin A (TSA), indicating that CyaA/cAMP signaling triggers epigenetic silencing of genes for micronutrient acquisition receptors. These results suggest a new mechanism by which B. pertussis evades host sentinel phagocytes to achieve proliferation on airway mucosa.IMPORTANCETo establish a productive infection of the nasopharyngeal mucosa and proliferate to sufficiently high numbers that trigger rhinitis and aerosol-mediated transmission, the pertussis agent Bordetella pertussis deploys several immunosuppressive protein toxins that compromise the sentinel functions of mucosa patrolling phagocytes. We show that cAMP signaling elicited by very low concentrations (22 pM) of Bordetella adenylate cyclase toxin downregulates the iron acquisition systems of CD14+ monocytes. The resulting iron deprivation of iron, a key micronutrient, then represents an additional aspect of CyaA toxin action involved in the inhibition of differentiation of monocytes into the enlarged bactericidal macrophage cells. This corroborates the newly discovered paradigm of host defense evasion mechanisms employed by bacterial pathogens, where manipulation of cellular cAMP levels blocks monocyte to macrophage transition and replenishment of exhausted phagocytes, thereby contributing to the formation of a safe niche for pathogen proliferation and dissemination.


Subject(s)
Adenylate Cyclase Toxin , Bordetella pertussis , Cell Differentiation , Cyclic AMP , Lipopolysaccharide Receptors , Monocytes , Signal Transduction , Humans , Monocytes/metabolism , Monocytes/immunology , Monocytes/microbiology , Cyclic AMP/metabolism , Adenylate Cyclase Toxin/metabolism , Adenylate Cyclase Toxin/genetics , Lipopolysaccharide Receptors/metabolism , Iron/metabolism , Up-Regulation , Antigens, CD/metabolism , Antigens, CD/genetics , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Antigens, Differentiation, Myelomonocytic
9.
Biochimie ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901792

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.

10.
J Plant Physiol ; 299: 154272, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772322

ABSTRACT

Soil salinization-alkalization severely affects plant growth and crop yield worldwide, especially in the Songnen Plain of Northeast China. Saline-alkaline stress increases the pH around the plant roots, thereby limiting the absorption and transportation of nutrients and ions, such as iron (Fe). Fe is an essential micronutrient that plays important roles in many metabolic processes during plant growth and development, and it is acquired by the root cells via iron-regulated transporter1 (IRT1). However, the function of Oryza sativa IRT1 (OsIRT1) under soda saline-alkaline stress remains unknown. Therefore, in this study, we generated OsIRT1 mutant lines and OsIRT1-overexpressing lines in the background of the O. sativa Songjing2 cultivar to investigate the roles of OsIRT1 under soda saline-alkaline stress. The OsIRT1-overexpressing lines exhibited higher tolerance to saline-alkaline stress compared to the mutant lines during germination and seedling stages. Moreover, the expression of some saline-alkaline stress-related genes and Fe uptake and transport-related genes were altered. Furthermore, Fe and Zn contents were upregulated in the OsIRT1-overexpressing lines under saline-alkaline stress. Further analysis revealed that Fe and Zn supplementation increased the tolerance of O. sativa seedlings to saline-alkaline stress. Altogether, our results indicate that OsIRT1 plays a significant role in O. sativa by repairing the saline-alkaline stress-induced damage. Our findings provide novel insights into the role of OsIRT1 in O. sativa under soda saline-alkaline stress and suggest that OsIRT1 can serve as a potential target gene for the development of saline-alkaline stress-tolerant O. sativa plants.


Subject(s)
Iron , Oryza , Plant Proteins , Oryza/genetics , Oryza/physiology , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Iron/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Salt Tolerance/genetics
11.
Mol Microbiol ; 121(6): 1217-1227, 2024 06.
Article in English | MEDLINE | ID: mdl-38725184

ABSTRACT

The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.


Subject(s)
5' Untranslated Regions , Bacterial Proteins , Bradyrhizobium , Gene Expression Regulation, Bacterial , Operon , RNA-Binding Proteins , Bradyrhizobium/genetics , Bradyrhizobium/metabolism , Operon/genetics , 5' Untranslated Regions/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Heme/metabolism , Promoter Regions, Genetic , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , Protein Binding
12.
J Bacteriol ; 206(5): e0002424, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38591913

ABSTRACT

Microbes synthesize and secrete siderophores, that bind and solubilize precipitated or otherwise unavailable iron in their microenvironments. Gram (-) bacterial TonB-dependent outer membrane receptors capture the resulting ferric siderophores to begin the uptake process. From their similarity to fepA, the structural gene for the Escherichia coli ferric enterobactin (FeEnt) receptor, we identified four homologous genes in the human and animal ESKAPE pathogen Klebsiella pneumoniae (strain Kp52.145). One locus encodes IroN (locus 0027 on plasmid pII), and three other loci encode other FepA orthologs/paralogs (chromosomal loci 1658, 2380, and 4984). Based on the crystal structure of E. coli FepA (1FEP), we modeled the tertiary structures of the K. pneumoniae FepA homologs and genetically engineered individual Cys substitutions in their predicted surface loops. We subjected bacteria expressing the Cys mutant proteins to modification with extrinsic fluorescein maleimide (FM) and used the resulting fluorescently labeled cells to spectroscopically monitor the binding and transport of catecholate ferric siderophores by the four different receptors. The FM-modified FepA homologs were nanosensors that defined the ferric catecholate uptake pathways in pathogenic strains of K. pneumoniae. In Kp52.145, loci 1658 and 4984 encoded receptors that primarily recognized and transported FeEnt; locus 0027 produced a receptor that principally bound and transported FeEnt and glucosylated FeEnt (FeGEnt); locus 2380 encoded a protein that bound ferric catecholate compounds but did not detectably transport them. The sensors also characterized the uptake of iron complexes, including FeGEnt, by the hypervirulent, hypermucoviscous K. pneumoniae strain hvKp1. IMPORTANCE: Both commensal and pathogenic bacteria produce small organic chelators, called siderophores, that avidly bind iron and increase its bioavailability. Klebsiella pneumoniae variably produces four siderophores that antagonize host iron sequestration: enterobactin, glucosylated enterobactin (also termed salmochelin), aerobactin, and yersiniabactin, which promote colonization of different host tissues. Abundant evidence links bacterial iron acquisition to virulence and infectious diseases. The data we report explain the recognition and transport of ferric catecholates and other siderophores, which are crucial to iron acquisition by K. pneumoniae.


Subject(s)
Iron , Klebsiella pneumoniae , Siderophores , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/genetics , Siderophores/metabolism , Iron/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Enterobactin/metabolism , Biological Transport , Carrier Proteins
13.
Metallomics ; 16(3)2024 03 12.
Article in English | MEDLINE | ID: mdl-38425033

ABSTRACT

The tuberculosis (TB) emergency has been a pressing health threat for decades. With the emergence of drug-resistant TB and complications from the COVID-19 pandemic, the TB health crisis is more serious than ever. Mycobacterium tuberculosis (Mtb), the causative agent of TB, requires iron for its survival. Thus, Mtb has evolved several mechanisms to acquire iron from the host. Mtb produces two siderophores, mycobactin and carboxymycobactin, which scavenge for host iron. Mtb siderophore-dependent iron acquisition requires the export of apo-siderophores from the cytosol to the host environment and import of iron-bound siderophores. The export of Mtb apo-siderophores across the inner membrane is facilitated by two mycobacterial inner membrane proteins with their cognate periplasmic accessory proteins, designated MmpL4/MmpS4 and MmpL5/MmpS5. Notably, the Mtb MmpL4/MmpS4 and MmpL5/MmpS5 complexes have also been implicated in the efflux of anti-TB drugs. Herein, we solved the crystal structure of M. thermoresistibile MmpS5. The MmpS5 structure reveals a previously uncharacterized, biologically relevant disulfide bond that appears to be conserved across the Mycobacterium MmpS4/S5 homologs, and comparison with structural homologs suggests that MmpS5 may be dimeric.


Subject(s)
Mycobacteriaceae , Mycobacterium tuberculosis , Tuberculosis , Humans , Pandemics , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Siderophores/metabolism , Iron/metabolism , Disulfides/metabolism , Bacterial Proteins/metabolism
14.
Microbiol Res ; 282: 127661, 2024 May.
Article in English | MEDLINE | ID: mdl-38432016

ABSTRACT

In yeasts, ferric reductase catalyzes reduction of ferric ion to ferrous form, which is essential for the reductive iron assimilation system. However, the physiological roles of ferric reductases remain largely unknown in the filamentous fungi. In this study, genome-wide annotation revealed thirteen ferric reductase-like (Fre) proteins in the filamentous insect pathogenic fungus Beauveria bassiana, and all their functions were genetically characterized. Ferric reductase family proteins exhibit different sub-cellular distributions (e.g., cell periphery and vacuole), which was due to divergent domain architectures. Fre proteins had a synergistic effect on fungal virulence, which was ascribed to their distinct functions in different physiologies. Ten Fre proteins were not involved in reduction of ferric ion in submerged mycelia, but most proteins contributed to blastospore development. Only two Fre proteins significantly contributed to B. bassiana vegetative growth under the chemical-induced iron starvation, but most Fre proteins were involved in resistance to osmotic and oxidative stresses. Notably, a bZIP-type transcription factor HapX bound to the promoter regions of all FRE genes in B. bassiana, and displayed varying roles in the transcription activation of these genes. This study reveals the important role of BbFre family proteins in development, stress response, and insect pathogenicity, as well as their distinctive role in the absorption of ferric iron from the environment.


Subject(s)
Beauveria , FMN Reductase , Animals , Virulence/genetics , Beauveria/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal , Insecta , Iron/metabolism
15.
Curr Med Chem ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38310389

ABSTRACT

Siderophores are low molecular weight compounds produced by microorganisms to scavenge iron in iron-deficient environments. Rhodotorulic acid, a natural hydroxamate siderophore, plays a vital role in iron acquisition for fungi and bacteria. As the simplest natural hydroxamate siderophore, it exhibits a high affinity for ferric ions, enabling it to form stable complexes that facilitate iron uptake and transport within microorganisms. This article provides a comprehensive analysis of this hydroxamate siderophore, rhodotorulic acid, its synthesis, physicochemical properties, and biological significance. It also explores its applications in antifungal and plant protection strategies. Insights into RA derivatives reveal distinct biological effects and applications with potential in various fields, from antioxidants to antifungals. Rhodotorulic acid and its derivatives show promise for novel therapies, plant protection strategies, and iron supplementation in agriculture. Understanding their properties could advance science and medicine with sustainable practices.

16.
mBio ; 15(2): e0027723, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38236035

ABSTRACT

Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all Escherichia coli express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of E. coli and related Enterobacterales.IMPORTANCEPatients with urinary tract infections are often infected with Escherichia coli strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic E. coli is not redundant with the ubiquitous E. coli enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in E. coli and related Enterobacterales.


Subject(s)
Phenols , Thiazoles , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Siderophores/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Enterobactin/metabolism , Iron/metabolism , Urinary Tract Infections/microbiology
17.
Vet Res ; 55(1): 6, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38217046

ABSTRACT

Although the role of iron in bacterial infections has been well described for Staphylococcus (S.) aureus, iron acquisition in (bovine-associated) non-aureus staphylococci and mammaliicocci (NASM) remains insufficiently mapped. This study aimed at elucidating differences between four diverse bovine NASM field strains from two species, namely S. chromogenes and S. equorum, in regards to iron uptake (with ferritin and lactoferrin as an iron source) and siderophore production (staphyloferrin A and staphyloferrin B) by investigating the relationship between the genetic basis of iron acquisition through whole genome sequencing (WGS) with their observed phenotypic behavior. The four field strains were isolated in a previous study from composite cow milk (CCM) and bulk tank milk (BTM) in a Flemish dairy herd. Additionally, two well-studied S. chromogenes isolates originating from a persistent intramammary infection and from a teat apex were included for comparative purpose in all assays. Significant differences between species and strains were identified. In our phenotypical iron acquisition assay, while lactoferrin had no effect on growth recovery for all strains in iron deficient media, we found that ferritin served as an effective source for growth recovery in iron-deficient media for S. chromogenes CCM and BTM strains. This finding was further corroborated by analyzing potential ferritin iron acquisition genes using whole-genome sequencing data, which showed that all S. chromogenes strains contained hits for all three proposed ferritin reductive pathway genes. Furthermore, a qualitative assay indicated siderophore production by all strains, except for S. equorum. This lack of siderophore production in S. equorum was supported by a quantitative assay, which revealed significantly lower or negligible siderophore amounts compared to S. aureus and S. chromogenes. The WGS analysis showed that all tested strains, except for S. equorum, possessed complete staphyloferrin A (SA)-synthesis and export operons, which likely explains the phenotypic absence of siderophore production in S. equorum strains. While analyzing the staphyloferrin A and staphyloferrin B operon landscapes for all strains, we noticed some differences in the proteins responsible for iron acquisition between different species. However, within strains of the same species, the siderophore-related proteins remained conserved. Our findings contribute valuable insights into the genetic elements associated with bovine NASM pathogenesis.


Subject(s)
Cattle Diseases , Citrates , Mastitis, Bovine , Ornithine/analogs & derivatives , Staphylococcal Infections , Female , Animals , Cattle , Staphylococcus aureus/genetics , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Lactoferrin/genetics , Mastitis, Bovine/microbiology , Staphylococcus , Milk , Iron , Siderophores , Ferritins , Cattle Diseases/microbiology
18.
Microbiol Spectr ; 12(1): e0329723, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38038454

ABSTRACT

IMPORTANCE: Heme degradation provides pathogens with growth essential iron, leveraging on the host heme reservoir. Bacteria typically import and degrade heme enzymatically, and here, we demonstrated a significant deviation from this dogma. We found that Streptococcus pneumoniae liberates iron from met-hemoglobin extracellularly, in a hydrogen peroxide (H2O2)- and cell-dependent manner; this activity serves as a major iron acquisition mechanism for S. pneumoniae. Inhabiting oxygen-rich environments is a major part of pneumococcal biology, and hence, H2O2-mediated heme degradation likely supplies iron during infection. Moreover, H2O2 reaction with ferrous hemoglobin but not with met-hemoglobin is known to result in heme breakdown. Therefore, the ability of pneumococci to degrade heme from met-hemoglobin is a new paradigm. Lastly, this study will inform other research as it demonstrates that extracellular degradation must be considered in the interpretations of experiments in which H2O2-producing bacteria are given heme or hemoproteins as an iron source.


Subject(s)
Hydrogen Peroxide , Streptococcus pneumoniae , Hydrogen Peroxide/metabolism , Streptococcus pneumoniae/metabolism , Hemoglobins/metabolism , Heme/metabolism , Iron/metabolism
19.
Braz J Microbiol ; 55(1): 1-9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38036848

ABSTRACT

Uropathogenic Escherichia coli (UPEC) have the potential to receive the virulence markers of intestinal pathotypes and transform into various important hybrid pathotypes. This study aimed to investigate the frequency and characteristics of hybrid enteroaggregative E. coli (EAEC)/UPEC strains. Out of 202 UPEC strains, nine (4.5%) were detected as hybrid EAEC/UPEC. These strains carried one to four iron uptake systems. Among nine investigated pathogenicity islands (PAIs), PAI IV536, PAI II536, and PAI ICFT073 were found in 9 (100%), 3 (33.3%), and 1 (11.1%) strains, respectively. The chuA and sitA genes were detected in 5 (55.5%) and 3 (33.3%) hybrid strains, respectively. Six hybrid strains were found to be typical extraintestinal pathogenic E. coli (ExPEC) according to their virulence traits. Most of the hybrid strains belonged to the phylogenetic group E (6/9). Among the hybrid strains, seven (7/9) were able to form biofilm and adhere to cells; however, only two strains penetrated into the HeLa cells. Our findings reveal some of the virulence characteristics of hybrid strains that lead to fitness and infection in the urinary tract. These strains, with virulence factors of intestinal and non-intestinal pathotypes, may become emerging pathogens in clinical settings; therefore, further studies are needed to reveal their pathogenicity mechanisms and so that preventive measures can be taken.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Extraintestinal Pathogenic Escherichia coli , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Phylogeny , HeLa Cells , Virulence Factors/genetics , Extraintestinal Pathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/genetics , Urinary Tract Infections/microbiology , Escherichia coli Proteins/genetics
20.
J Bacteriol ; 205(12): e0032423, 2023 12 19.
Article in English | MEDLINE | ID: mdl-37971230

ABSTRACT

IMPORTANCE: This study is the first example of C. difficile growing with siderophores as the sole iron source and describes the characterization of the ferric hydroxamate uptake ABC transporter (FhuDBGC). This transporter shows specificity to the siderophore ferrichrome. While not required for pathogenesis, this transporter highlights the redundancy in iron acquisition mechanisms that C. difficile uses to compete for iron during an infection.


Subject(s)
Clostridioides difficile , Siderophores , Iron/metabolism , Ferrichrome/metabolism , Clostridioides difficile/metabolism , Clostridioides , Membrane Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL