Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.512
Filter
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 619-624, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39223027

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by continuous inflammation and ulcer formation in the intestinal mucosa.Its pathogenesis involves immune dysfunction,dysbiosis of gut microbiota,and mucosal damage caused by inflammation.Ferroptosis is an iron-dependent form of cell death regulated by disturbances in iron metabolism,lipid peroxidation,and depletion of glutathione (GSH).Studies have indicated that ferroptosis plays a crucial role in the pathogenesis of UC,particularly in regulating inflammatory responses and damaging intestinal epithelial cells.This article reviews the regulatory mechanisms and roles of ferroptosis in UC and discusses the potential therapeutic strategies to alleviate UC symptoms by modulating iron metabolism,reducing lipid peroxidation,and maintaining GSH levels,providing new targets and directions for the diagnosis and treatment of UC.


Subject(s)
Colitis, Ulcerative , Ferroptosis , Humans , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Iron/metabolism , Lipid Peroxidation , Glutathione/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Gastrointestinal Microbiome , Inflammation , Animals
2.
Biomed Pharmacother ; 179: 117419, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39245001

ABSTRACT

Brain iron homeostasis plays a vital role in maintaining brain development and controlling neuronal function under physiological conditions. Many studies have shown that the imbalance of brain iron homeostasis is closely related to the pathogenesis of neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD). Recent advances have revealed the importance of iron transporters and regulatory molecules in the pathogenesis and treatment of NDs. This review summarizes the research progress on brain iron overload and the aberrant expression of several key iron transporters and regulators in AD and PD, emphasizes the pathological roles of these molecules in the pathogenesis of AD and PD, and highlights the therapeutic prospects of targeting these iron transporters and regulators to restore brain iron homeostasis in the treatment of AD and PD. A comprehensive understanding of the pathophysiological roles of iron, iron transporters and regulators, and their regulations in NDs may provide new therapeutic avenues for more targeted neurotherapeutic strategies for treating these diseases.

3.
Curr Res Neurobiol ; 7: 100136, 2024.
Article in English | MEDLINE | ID: mdl-39239479

ABSTRACT

Iron is an important cofactor for many proteins and is used to create Fe-S clusters and heme prosthetic groups that enzymes use to catalyze enzymatic reactions. Proteins involved in the import, export, and sequestration of iron are regulated by Iron Regulatory Proteins (IRPs). Recently, a patient with bi-allelic loss of function mutations in IREB2 leading to the absence of IRP2 protein was discovered. The patient failed to achieve developmental milestones and was diagnosed with dystonic cerebral palsy, epilepsy, microcytic hypochromic anemia, and frontal lobe atrophy. Several more IREB2 deficient patients subsequently identified manifested similar neurological problems. To better understand the manifestations of this novel neurological disease, we subjected an Irp2-null mouse model to extensive behavioral testing. Irp2-null mice had a significant motor deficit demonstrated by reduced performance on rotarod and hanging wire tests. Somatosensory function was also compromised in hot and cold plate assays. Their spatial search strategy was impaired in the Barnes maze and they exhibited a difficulty in flexibly adapting their response in the operant touchscreen reversal learning task. The latter is a cognitive behavior known to require an intact prefrontal cortex. These results suggest that loss of Irp2 in mice causes motor and behavioral deficits that faithfully reflect the IREB2 patient's neurodegenerative disorder.

4.
Rev Clin Esp (Barc) ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236980

ABSTRACT

Anemia of Inflammation begins with the activation of the immune system and the subsequent release of cytokines that lead to an elevation of hepcidin, responsible for hypoferremia, and a suppression of erythropoiesis due to lack of iron. The anemia is usually mild/moderate, normocytic/normochromic and is the most prevalent, after iron deficiency anemia, and is the most common in patients with chronic diseases, in the elderly and in hospitalized patients. Anemia can influence the patient's quality of life and have a negative impact on survival. Treatment should be aimed at improving the underlying disease and correcting the anemia. Intravenous iron, erythropoietin and prolyl hydroxylase inhibitors are the current basis of treatment, but future therapy is directed against hepcidin, which is ultimately responsible for anemia.

5.
Ageing Res Rev ; 101: 102477, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218077

ABSTRACT

Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.

6.
Hepat Med ; 16: 65-77, 2024.
Article in English | MEDLINE | ID: mdl-39247515

ABSTRACT

Purpose: Both hepatic iron accumulation and hemolysis have been identified as independent prognostic factor in alcohol-related liver disease (ALD); however, the mechanisms still remain poorly understood. We here demonstrate that hepatocytes are able to directly ingest aged and ethanol-primed red blood cells (RBCs), a process termed efferocytosis. Methods: Efferocytosis of RBCs was directly studied in vitro and observed by live microscopy for real-time visualization. RBCs pretreated with either CuSO4 or ethanol following co-incubation with Huh7 cells and murine primary hepatocytes. Heme oxygenase-1 (HO-1) and other targets were measured by q-PCR. Results: As shown by live microscopy, oxidized RBCs, but not intact RBCs, are rapidly ingested by both Huh7 cells and murine primary hepatocytes within 10 minutes. In some cases, more than 10 RBCs were seen within hepatocytes, surrounding the nucleus. RBC efferocytosis also rapidly induces HO1, its upstream regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and ferritin, indicating efficient heme degradation. Preliminary data further suggest that hepatocyte efferocytosis of oxidized RBCs is, at least in part, mediated by scavenging receptors such as ASGPR1. Of note, pretreatment of RBCs with ethanol but also heme and bilirubin also initiated efferocytosis. In a cohort of heavy human drinkers, a significant correlation of hepatic ASGPR1 with the heme degradation pathway was observed. Conclusion: We here demonstrate that hepatocytes can directly ingest and degrade oxidized RBCs through efferocytosis, a process that can be also triggered by ethanol, heme and bilirubin. Our findings are highly suggestive for a novel mechanism of hepatic iron overload in ALD patients.

7.
Front Physiol ; 15: 1436897, 2024.
Article in English | MEDLINE | ID: mdl-39135705

ABSTRACT

Heme is essential for a variety of proteins involved in vital physiological functions in the body, such as oxygen transport, drug metabolism, biosynthesis of steroids, signal transduction, antioxidant defense and mitochondrial respiration. However, free heme is potentially cytotoxic due to the capacity of heme iron to promote the oxidation of cellular molecules. The liver plays a central role in heme metabolism by significantly contributing to heme synthesis, heme detoxification, and recycling of heme iron. Conversely, enzymatic defects in the heme biosynthetic pathway originate multisystemic diseases (porphyrias) that are highly associated with liver damage. In addition, there is growing evidence that heme contributes to the outcomes of inflammatory, metabolic and malignant liver diseases. In this review, we summarize the contribution of the liver to heme metabolism and the association of heme dyshomeostasis with liver disease.

8.
Br J Haematol ; 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39128849

ABSTRACT

Sickle cell disease (SCD) is an inherited haemoglobinopathy associated with significant morbidity and mortality. Automated red blood cell exchange (aRCE) plays a key role in managing SCD, eliciting both therapeutic and prophylactic effects. The ideal post-apheresis Ht target for chronic aRCE treatment is not yet unanimously recognized, as well as iron homeostasis can be different among patients. Ross et al. reported their experience on the chronic management of SCD patients undergoing aRCE with a final post-exchange Ht higher than the value commonly adopted, analysing red blood cell transfusion requirements and iron-related outcomes in the study population. Commentary on: Ross et al. Automated red blood cell exchange with a post-procedure haematocrit targeted at 34% in the chronic management of sickle cell disease. Br J Haematol 2024 (Online ahead of print). doi: 10.1111/bjh.19674.

9.
Zhonghua Nan Ke Xue ; 30(2): 174-179, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-39177353

ABSTRACT

Ferroptosis is an iron-dependent form of programmed cell death triggered by the excessive accumulation of lipid peroxides on the cell membrane. Recent studies have found that ferroptosis can be induced by exposure of the testis tissue and germ cells to some high-risk factors, accompanied by various characteristic reproductive system injuries, including changes in cell morphology, ferroptosis-related physicochemical indicators and gene expressions. This review focuses on the association of ferroptosis with male reproductive system diseases from three key aspects: iron metabolism abnormalities, Cystine/GSH/GPX4 axis imbalance, and lipid peroxidation.


Subject(s)
Ferroptosis , Male , Humans , Lipid Peroxidation , Iron/metabolism , Genital Diseases, Male/etiology , Testis/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Glutathione/metabolism
10.
BMC Pediatr ; 24(1): 530, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164675

ABSTRACT

BACKGROUND: Iron deficiency (ID) is the most prevalent nutritional deficiency disease in preterm infants, significantly affecting their growth and development. For preterm infants to flourish physically and neurologically, timely iron supplementation is essential. The main goals of this study were to determine whether the present iron supplementation regimen results in iron overload in late preterm infants and whether it can meet the growth requirements of early preterm infants for catch-up. METHODS: We conducted a prospective follow-up study on preterm infants at the Department of Child Health, West China Second University Hospital, Sichuan University, from January 1, 2020, to August 31, 2020. In this study, 177 preterm infants were divided into two groups based on gestational age-early preterm infants (gestational age < 34 weeks) and late preterm infants (gestational age ≥ 34 weeks and < 37 weeks)-to compare the incidence of iron deficiency, iron status, and physical growth of preterm infants receiving iron supplements (2-4 mg/kg/d). RESULTS: Iron supplementation considerably reduced the incidence of iron deficiency in preterm infants. The prevalence of iron deficiency in early preterm infants and late preterm infants was 11.3% and 5.1%, respectively, at the corrected gestational age of 3 months; at the corrected gestational age of 6 months, the prevalence was 5.3% and 6.3%, respectively. No preterm infants with iron deficiency were detected in either group at the corrected gestational age of 12 months. Ferritin was substantially lower in early preterm infants (36.87 ± 31.57 ng/ml) than in late preterm infants (65.78 ± 75.76 ng/ml) at the corrected gestational age of 3 months (p < 0.05). A multifactorial regression analysis of factors influencing iron metabolism levels in preterm infants revealed a positive relationship between log10hepcidin, birth weight, and ferritin, with higher birth weights resulting in higher ferritin levels. CONCLUSIONS: Postnatal iron supplementation at 2-4 mg/kg/d in preterm infants significantly decreases the incidence of ID. There were substantial differences in iron levels across preterm infants of varying gestational ages. A tailored iron supplementation plan based on growth, birth weight, and gestational age may be a more suitable route for iron supplementation. Although the current study found that the postnatal iron status of early preterm infants differed from that of late preterm infants, the actual mechanism of action remains unknown, and large-sample, multicenter clinical studies are required to investigate this further.


Subject(s)
Anemia, Iron-Deficiency , Dietary Supplements , Gestational Age , Infant, Premature , Iron , Humans , Infant, Newborn , Prospective Studies , Female , Male , Anemia, Iron-Deficiency/prevention & control , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/blood , Follow-Up Studies , Iron/administration & dosage , Iron/blood , Infant , Infant, Premature, Diseases/prevention & control , Infant, Premature, Diseases/epidemiology , China/epidemiology , Incidence
11.
ACS Nano ; 18(33): 22257-22274, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39121010

ABSTRACT

Iron metabolism has emerged as a promising target for cancer therapy; however, the innate metabolic compensatory capacity of cancer cells significantly limits the effectiveness of iron metabolism therapy. Herein, bioactive gallium sulfide nanodots (GaSx), with dual functions of "reprogramming" and "interfering" iron metabolic pathways, were successfully developed for tumor iron metabolism therapy. The constructed GaSx nanodots ingeniously harness hydrogen sulfide (H2S) gas, which is released in response to the tumor microenvironment, to reprogram the inherent transferrin receptor 1 (TfR1)-ferroportin 1 (FPN1) iron metabolism axis in cancer cells. Concurrently, the gallium ions (Ga3+) derived from GaSx act as a biochemical "Trojan horse", mimicking the role of iron and displacing it from essential biomolecular binding sites, thereby influencing the fate of cancer cells. By leveraging the dual mechanisms of Ga3+-mediated iron disruption and H2S-facilitated reprogramming of iron metabolic pathways, GaSx prompted the initiation of a paraptosis-apoptosis hybrid pathway in cancer cells, leading to marked suppression of tumor proliferation. Importantly, the dysregulation of iron metabolism induced by GaSx notably increased tumor cell susceptibility to both chemotherapy and immune checkpoint blockade (ICB) therapy. This study underscores the therapeutic promise of gas-based interventions and metal ion interference strategies for the tumor metabolism treatment.


Subject(s)
Apoptosis , Gallium , Iron , Paraptosis , Animals , Humans , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cation Transport Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Gallium/chemistry , Gallium/pharmacology , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/chemistry , Hydrogen Sulfide/pharmacology , Iron/metabolism , Iron/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Paraptosis/drug effects , Receptors, Transferrin/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Tumor Microenvironment/drug effects
12.
Cell Commun Signal ; 22(1): 412, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180081

ABSTRACT

BACKGROUND: Dysregulation of iron metabolism is implicated in malignant transformation, cancer progression, and therapeutic resistance. Here, we demonstrate that iron regulatory protein 2 (IRP2) preferentially regulates iron metabolism and promotes tumor growth in colorectal cancer (CRC). METHODS: IRP2 knockdown and knockout cells were generated using RNA interference and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 methodologies, respectively. Cell viability was evaluated using both CCK-8 assay and cell counting techniques. Furthermore, IRP2 inhibition was determined by surface plasmon resonance (SPR) and RNA immunoprecipitation (IP). The suppressive effects of IRP2 were also corroborated in both organoid and mouse xenograft models, providing a comprehensive validation of IRP2's role. RESULTS: We have elucidated the role of IRP2 as a preferential regulator of iron metabolism, actively promoting tumorigenesis within CRC. Elevated levels of IRP2 expression in patient samples are correlated with diminished overall survival, thereby reinforcing its potential role as a prognostic biomarker. The functional suppression of IRP2 resulted in a pronounced delay in tumor growth. Building on this proof of concept, we have developed IRP2 inhibitors that significantly reduce IRP2 expression and hinder its interaction with iron-responsive elements in key iron-regulating proteins, such as ferritin heavy chain 1 (FTH1) and transferrin receptor (TFRC), culminating in iron depletion and a marked reduction in CRC cell proliferation. Furthermore, these inhibitors are shown to activate the AMPK-ULK1-Beclin1 signaling cascade, leading to cell death in CRC models. CONCLUSIONS: Collectively, these findings highlight the therapeutic potential of targeting IRP2 to exploit the disruption of iron metabolism in CRC, presenting a strategic advancement in addressing a critical area of unmet clinical need.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Iron Regulatory Protein 2 , Iron , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Iron Regulatory Protein 2/genetics , Iron Regulatory Protein 2/metabolism , Animals , Iron/metabolism , Mice , Cell Line, Tumor , Mice, Nude
13.
Biomed Pharmacother ; 178: 117232, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098181

ABSTRACT

Alkaloids have remarkable biological and pharmacological properties and have recently garnered extensive attention. Various alkaloids, including commercially available drugs such as berberine, substantially affect ferroptosis. In addition to the three main pathways of ferroptosis, iron metabolism, phospholipid metabolism, and the glutathione peroxidase 4-regulated pathway, novel mechanisms of ferroptosis are continuously being identified. Alkaloids can modulate the progression of various diseases through ferroptosis and exhibit the ability to exert varied effects depending on dosage and tissue type underscores their versatility. Therefore, this review comprehensively summarizes primary targets and the latest advancements of alkaloids in ferroptosis, as well as the dual roles of alkaloids in inhibiting and promoting ferroptosis.


Subject(s)
Alkaloids , Ferroptosis , Ferroptosis/drug effects , Humans , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Iron/metabolism
14.
J Biol Chem ; : 107703, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173952

ABSTRACT

Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that plays an important role in biogeochemical iron and sulfur cycling and is a member of the consortia used in industrial hydrometallurgical processing of copper. Metal sulfide bioleaching is catalyzed by the regeneration of ferric iron, however, bioleaching of chalcopyrite, the dominant unmined form of copper on Earth, is inhibited by surface passivation. Here, we report the implementation of CRISPR interference (CRISPRi) using the catalytically inactive Cas12a (dCas12a) in A. ferrooxidans to knockdown the expression of genes in the petI and petII operons. These operons encode bc1 complex proteins and knockdown of these genes enabled the manipulation (enhancement or repression) of iron oxidation. The petB2 gene knockdown strain enhanced iron oxidation, leading to enhanced pyrite and chalcopyrite oxidation, which correlated with reduced biofilm formation and decreased surface passivation of the minerals. These findings highlight the utility of CRISPRi/dCas12a technology for engineering A. ferrooxidans while unveiling a new strategy to manipulate and improve bioleaching efficiency.

15.
Front Pediatr ; 12: 1419200, 2024.
Article in English | MEDLINE | ID: mdl-39156024

ABSTRACT

Familial Mediterranean fever (FMF) is the most common hereditary systemic auto-inflammatory disease. Digestive complaint is a common feature during FMF attacks. Nevertheless, digestive complaint in attack-free period has scarcely been studied. This retrospective monocentric study aimed to describe the clinical, histological, and genetic features of pediatric patients with FMF who underwent endo-colonoscopy in this setting. Out of 115 patients with a diagnosis of FMF, 10 (8, 7%) underwent endoscopy or colonoscopy. All displayed homozygote MEFV M694V mutation and presented chronic abdominal pain, iron deficiency, and/or growth retardation. On the histological level, all patients displayed low-grade mucosal inflammation, characterized by a moderate eosinophilic infiltrate in the lamina propria sometimes associated with increased crypt apoptosis. The proportion of patients explored with endoscopy or colonoscopy was 0.4 patients per year in our center, compared with 5.7 patients per year nationwide. This study identified a specific intestinal phenotype that does not respond to the criteria of classical inflammatory bowel disease: pediatric FMF pediatric patients with homozygous MEFV M694V, abdominal pain, iron deficiency, and growth retardation should benefit from specialized gastroenterological advice.

16.
J Biol Chem ; : 107678, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151727

ABSTRACT

Recent studies reveal that biosynthesis of iron-sulfur clusters (Fe-Ss) is essential for cell proliferation, including that of cancer cells. Nonetheless, it remains unclear how Fe-S biosynthesis functions in cell proliferation/survival. Here, we report that proper Fe-S biosynthesis is essential to prevent cellular senescence, apoptosis or ferroptosis, depending on cell context. To assess these outcomes in cancer, we developed an ovarian cancer line with conditional KO of FDX2, a component of the core Fe-S assembly complex. FDX2 loss induced global down-regulation of Fe-S-containing proteins and Fe2+ overload, resulting in DNA damage and p53 pathway activation, and driving the senescence program. p53-deficiency augmented DNA damage responses upon FDX2 loss, resulting in apoptosis rather than senescence. FDX2 loss also sensitized cells to ferroptosis, as evidenced by compromised redox homeostasis of membrane phospholipids (PLs). Our results suggest that p53 status and PL homeostatic activity are critical determinants of diverse biological outcomes of Fe-S deficiency in cancer cells.

17.
Inflamm Res ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152299

ABSTRACT

Acute lung injury (ALI) is caused by a variety of intrapulmonary and extrapulmonary factors and is associated with high morbidity and mortality. Oxidative stress is an important part of the pathological mechanism of ALI. Ferroptosis is a mode of programmed cell death distinguished from others and characterized by iron-dependent lipid peroxidation. This article reviews the metabolic regulation of ferroptosis, its role in the pathogenesis of ALI, and the use of ferroptosis as a therapeutic target regarding the pharmacological treatment of ALI.

18.
Front Aging Neurosci ; 16: 1416014, 2024.
Article in English | MEDLINE | ID: mdl-39206119

ABSTRACT

Background: To evaluate the causal relationship between abdominal multi-organ iron content and PD risk using publicly available genome-wide association study (GWAS) data. Methods: We conducted MR analysis to assess the effects of iron content in various abdominal organs on PD risk, followed by reverse analysis. Additionally, MVMR analysis evaluated the independent effects of organ-specific iron content on PD. We utilized genetic variation data from the UK Biobank, including liver iron content (n = 32,858), spleen iron content (n = 35,324), and pancreas iron content (n = 25,617), as well as summary-level data for Parkinson's disease from the FinnGen (n = 218,473) and two other large GWAS datasets of European populations (First dataset n = 480,018; Second dataset n = 2,829). The primary MR analysis used the inverse variance-weighted (IVW) method, confirmed by MR-Egger and weighted median methods. Sensitivity analysis was performed to address potential pleiotropy and heterogeneity. Observational cohort results were validated through replication cohort analysis, followed by meta-analysis. Results: IVW analysis revealed a causal relationship between increased liver iron content and elevated risk of PD (OR = 1.27; 95% CI: 1.05-1.53; p = 0.015). No significant causal relationship was observed between spleen (OR = 1.00; 95% CI: 0.76-1.32; p = 0.983) and pancreatic (OR = 0.93; 95% CI: 0.72-1.20; p = 0.573) iron content and increased risk of PD. Meta-analysis of GWAS data for PD from three different sources using the random-effects IVW method showed a statistically significant causal relationship between liver iron content and the occurrence of PD (OR = 1.17, 95% CI: 1.01-1.35; p = 0.012). Conclusion: This study presents evidence from Mendelian randomization (MR) analysis indicating a significant causal link between increased liver iron content and a higher risk of Parkinson's disease (PD). These findings suggest that interventions targeting body iron metabolism, particularly liver iron levels, may be effective in preventing PD.

19.
Brain Behav Immun Health ; 40: 100824, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39161875

ABSTRACT

An estimated 250 million children face adverse health outcomes from early life exposure to severe or chronic social, economic, and nutritional adversity, highlighting/emphasizing the pressing concern about the link between ELS and long-term implications on mental and physical health. There is significant overlap between populations experiencing high levels of chronic stress and those experiencing iron deficiency, spotlighting the potential role of iron as a key mediator in this association. Iron, an essential micronutrient for brain development and immune function, is often depleted in stress conditions. Iron deficiency among the most common nutrient deficiencies in the world. Fetal and infant iron status may thus serve as a crucial intermediary between early chronic psychological stress and subsequent immune system changes to impact neurodevelopment. The review presents a hypothesized pathway between early life stress (ELS), iron deficiency, and neurodevelopment through the hypothalamic-pituitary-adrenocortical (HPA) axis and the IL-6-hepcidin axis. This hypothesis is derived from (1) evidence that stress impacts iron status (2) long-term neurodevelopmental outcomes that are shared by ELS and iron deficiency exposure, and (3) possible mechanisms for how iron may mediate the relation between ELS and iron deficiency through alterations in the developing immune system. The article concludes by proposing future research directions, emphasizing the need for rigorous studies to elucidate how stress and iron metabolism interact to modify the developing immune system. Understanding these mechanisms could open new avenues for improving human health and neurodevelopment for women and children globally, making it a timely and vital area of study in psychoneuroimmunology research.

20.
J Biol Chem ; 300(9): 107639, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39122013

ABSTRACT

Inflammatory bowel diseases (IBDs) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation is known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution, and that this in turn perpetuates the inflammation. This study analyzed human biopsies, animal models, and cellular systems to decipher the role of iron homeostasis in IBD. We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP) 1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular coculture model was established, which replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.

SELECTION OF CITATIONS
SEARCH DETAIL