Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
J Neurosci ; 43(44): 7264-7275, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37699715

ABSTRACT

Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that are involved in synapse assembly and function. The NLGN gene family consists of 5 genes (NLGN1-3, 4X, and 4Y). NLGN3 forms heterodimers with other NLGNs and is expressed at both excitatory and inhibitory synapses, although the distinct role at different synapses is not fully understood. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that targets various neuronal substrates to impact neuronal migration, neurite outgrowth, synaptic transmission, and plasticity. Both NLGNs and their presynaptic binding partners neurexins are highly associated with neurodevelopmental disorders. The NLGN3 gene is on the X chromosome and variants in NLGN3 have been linked to the pathophysiology in neurodevelopmental disorders. To better understand the endogenous modulation of NLGN3, we generated an HA-tagged knock-in mouse. We found that Cdk5 associates with NLGN3 in vivo and phosphorylates NLGN3 on serine 725 (S725) in the knock-in mouse of either sex. The phosphorylation affects the NLGN3 association with Kalirin-7, a postsynaptic guanine nucleotide exchange factors for Rho GTPase family proteins. We further observed that the phosphorylation modulates NLGN3 surface expression and NLGN3-mediated synaptic currents in cultured rat neurons. Thus, we characterized NLGN3 as a novel Cdk5 substrate and revealed the functional consequences of NLGN3 S725 phosphorylation in neurons. Our study provides a novel molecular mechanism underlying Cdk5-mediated regulation of postsynaptic cell adhesion molecules.SIGNIFICANCE STATEMENT NLGN3 is involved in synapse assembly and function at both excitatory and inhibitory synapses and has been associated with the pathophysiology of neurodevelopmental disorders. Cdk5 has brain-specific activity and is involved in neuronal transmission, synapse function, and plasticity. Here, we characterize NLGN3 as a Cdk5 substrate for the first time and show that Cdk5-mediated phosphorylation regulates NLGN3 function. We demonstrate that NLGN3 S725 is a Cdk5 phosphorylation site, and reveal that the site is important for NLGN3 association with Kalirin-7, NLGN3 surface expression, and NLGN3-mediated synaptic transmission.


Subject(s)
Cyclin-Dependent Kinase 5 , Synapses , Animals , Mice , Rats , Cell Adhesion Molecules/metabolism , Cyclin-Dependent Kinase 5/genetics , Cyclin-Dependent Kinase 5/metabolism , Phosphorylation/physiology , Rho Guanine Nucleotide Exchange Factors/metabolism , Serine/metabolism , Synapses/metabolism , Synaptic Transmission
2.
Biochem Biophys Res Commun ; 676: 121-131, 2023 10 08.
Article in English | MEDLINE | ID: mdl-37506473

ABSTRACT

Neonatal malnutrition is one of the most common causes of neurological disorders. However, the mechanism of action of the factors associated with neonatal nutrition in the brain remains unclear. In this study, we focused on fibroblast growth factor (FGF) 21 to elucidate the effects of malnutrition on the neonatal brain. FGF21 is an endocrine factor produced by the liver during lactation which is the main source of nutrition during the neonatal period. In this study, malnourishment during nursing mice induced decreased levels of Fgf21 mRNA in the liver and decreased levels of FGF21 in the serum. RNA-seq analysis of neonatal mouse brain tissue revealed that FGF21 controlled the expression of Kalrn-201 in the neonatal mouse brain. Kalrn-201 is a transcript of Kalirin, a Ras homologous guanine nucleotide exchange factor at the synapse. In mouse neurons, FGF21 induced the expression of Kalirin-7 (a Kalirin isoform) by down-regulating Kalrn-201. FGF21-induced Kalirin-7 stimulated neurite outgrowth in Neuro-2a cells. FGF21 also induced Growth hormone-releasing hormone (GHRH) expression in Neuro-2a cells. Kalirin-7 and GHRH expression induced by FGF21 was altered by inhibiting the activity of SH2-containing tyrosine phosphatase (SHP2) which is located downstream of the FGF receptor (FGFR). Additionally, malnourished nursing induced intron retention of the SHP2 gene (Ptpn11), resulting in the alteration of Kalirin-7 and GHRH expression by FGF21 signaling. Ptpn11 intron retention is suggested to be involved in regulating SHP2 activity. Taken together, these results suggest that FGF21 plays a critical role in the induction of neuronal neurite outgrowth and GHRH secretion in the neonatal brain, and this mechanism is regulated by SHP2. Thus, Ptpn11 intron retention induced by malnourished nursing may be involved in SHP2 activity.


Subject(s)
Fibroblast Growth Factors , Malnutrition , Mice , Animals , Animals, Newborn , Fibroblast Growth Factors/metabolism , Neurons/metabolism , Malnutrition/metabolism , Neuronal Outgrowth , Growth Hormone-Releasing Hormone/metabolism , Brain/metabolism
3.
Neurosci Lett ; 785: 136560, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35231583

ABSTRACT

The estrogen (17ß-estradiol, E2) level in the hippocampus is higher and more stable in male rats than female rats. Both stress and estrogen affect spine plasticity, and many studies have demonstrated that peripheral estrogen treatment can prevent stress-induced spine loss in both males and females. Some in vitro studies have indicated that neural estrogen (nE2) participates in the modulation of spine plasticity in cultured neurons. However, whether nE2 regulates spine density in vivo in males is not clear, and the specific role of nE2 in stress-induced depression-like behaviors of male rats remains unknown. We delivered letrozole (a selective aromatase inhibitor that blocks the conversion of testosterone to estradiol) and estrogen into the hippocampus of rats and found that letrozole treatment induced the same depression-like behaviors in control rats as observed in chronic unpredictable mild stress (CUMS) rats. Estrogen treatment reversed/or alleviated depression-like behaviors induced by CUMS or letrozole infusion and elevated Kalirin-7 expression in hippocampus. Estrogen treatment also rescued letrozole-induced spine loss. Expression of GluN1 and PSD-95 also changed with Kalirin-7 and spine density. All these proteins were decreased in CUMS rats and letrozole infusion rats but increased in rats treated with estrogen. In conclusion, nE2 in the hippocampus plays an important role in CUMS-induced depression-like behaviors in male rats and Kalirin-7 is involved in this process. GluN1 and PSD-95 possibly mediate the regulation of Kalirin-7 by nE2, which ultimately leads to changes in spine density and depression-like behaviors.


Subject(s)
Depression , Stress, Psychological , Animals , Depression/metabolism , Estradiol/metabolism , Estradiol/pharmacology , Estrogens/metabolism , Estrogens/pharmacology , Female , Hippocampus/metabolism , Letrozole , Male , Rats , Stress, Psychological/complications , Stress, Psychological/metabolism
4.
Am J Transl Res ; 12(8): 4819-4829, 2020.
Article in English | MEDLINE | ID: mdl-32913553

ABSTRACT

OBJECTIVE: Diabetic neuropathic pain (DNP) is one of the common complications in type 2 Diabetes Mellitus (DM) patients. However, molecular mechanisms in underlying diabetic neuropathic pain are still poorly understood. Kalirin-7, a multifunctional Rho GDP/GTP exchange factor, located at the excitatory synapses, was reported to modulate the neuronal cytoskeleton. Therefore, in this study, we explored the effects of Kalirin-7 on type 2 diabetic neuropathic pain and the mechanisms in spinal cord in rats. METHODS: The type 2 diabetic neuropathic pain model was established in rats by feeding them with a high-sugar and high-fat diet for 8 weeks, and then fasting them for 12 hours, followed by a single intraperitoneal injection of STZ. Kalirin-7 was knocked down in the spinal cord by an intrathecal administration of Kalirin-7 siRNA. RESULTS: The levels of Kalirin-7, p-NR2B and PSD-95 as well as the PSD-95-NR2B coupling were significantly increased in the spinal cord of type 2 DM rats. The knockdown of Kalirin-7 expression in the spinal cord by the intrathecal administration of Kalirin-7 siRNA not only reduced the levels of p-NR2B and the PSD-95-NR2B coupling in the spinal cord, but also relieved mechanical allodynia and thermal hyperalgesia in type 2 DM rats. CONCLUSIONS: Our findings suggest that spinally expressed Kalirin-7 likely contributes to type 2 diabetic neuropathic pain through regulating the PSD-95/NR2B interaction-dependent NR2B phosphorylation in the spinal cord.

5.
Neuron ; 107(3): 522-537.e6, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32464088

ABSTRACT

Dendritic spinules are thin protrusions, formed by neuronal spines, not adequately resolved by diffraction-limited light microscopy, which has limited our understanding of their behavior. Here we performed rapid structured illumination microscopy and enhanced resolution confocal microscopy to study spatiotemporal spinule dynamics in cortical pyramidal neurons. Spinules recurred at the same locations on mushroom spine heads. Most were short-lived, dynamic, exploratory, and originated near simple PSDs, whereas a subset was long-lived, elongated, and associated with complex PSDs. These subtypes were differentially regulated by Ca2+ transients. Furthermore, the postsynaptic Rac1-GEF kalirin-7 regulated spinule formation, elongation, and recurrence. Long-lived spinules often contained PSD fragments, contacted distal presynaptic terminals, and formed secondary synapses. NMDAR activation increased spinule number, length, and contact with distal presynaptic elements. Spinule subsets, dynamics, and recurrence were validated in cortical neurons of acute brain slices. Thus, we identified unique properties, regulatory mechanisms, and functions of spinule subtypes, supporting roles in neuronal connectivity.


Subject(s)
Dendritic Spines/ultrastructure , Guanine Nucleotide Exchange Factors/metabolism , Post-Synaptic Density/ultrastructure , Pyramidal Cells/ultrastructure , Synapses/ultrastructure , Animals , Calcium/metabolism , Cerebral Cortex/cytology , Dendritic Spines/metabolism , Dendritic Spines/physiology , Imaging, Three-Dimensional , Mice , Microscopy, Confocal , Post-Synaptic Density/physiology , Pyramidal Cells/physiology , Receptors, N-Methyl-D-Aspartate/agonists , Spatio-Temporal Analysis , Synapses/physiology
6.
Stress ; 23(3): 318-327, 2020 05.
Article in English | MEDLINE | ID: mdl-31556781

ABSTRACT

D2 receptors (D2Rs) located in both pre- and postsynaptic membranes of medium spiny neurons (MSNs) in the nucleus accumbens (NAc) are involved in the stress response and associated behaviors. The role of D2Rs in chronic unpredictable stress (CUS)-induced depression-like behaviors is not clear. Quinpirole (a D2R agonist) and eticlopride (a D2R antagonist) were stereotactically delivered into the NAc before Sprague Dawley rats underwent CUS. CUS-induced depression-like behaviors were accompanied by a significant decrease in both the dopamine (DA) level and D2R expression in the NAc. Eticlopride reversed CUS-induced depression-like behavior and rescued the DA levels in the NAc, and microinjection of DA into the NAc of CUS individuals had the same effect as eticlopride. By contrast, delivery of quinpirole into the NAc of control animals induced depression-like behaviors accompanied by a decrease in the DA level in the NAc. These results show that DA plays a key role in CUS-induced depression-like behaviors and the D2R exerts a presynaptic negative feedback on DA levels during CUS. Microinjection of quinpirole into the NAc also decreased the level of the kalirin-7 protein in the NAc of both control and stressed animals, while eticlopride increased its level in the NAc of rats. In agreement with these results, intraperitoneal injection of eticlopride in mice also caused an increase in both the kalirin-7 protein level in the NAc and spine density in MSNs, while quinpirole reduced them. These results suggest that regulation of kalirin-7 through D2R in the NAc is a general pathway in rats and mice, and is involved in CUS-induced depression-like behaviors. Kalirin-7 may be directly regulated through the D2R postsynaptic pathway or indirectly through the presynaptic pathway in the NAc. The interaction between D2R and kalirin-7 needs to be investigated further.


Subject(s)
Depression , Stress, Psychological , Animals , Depression/drug therapy , Depression/etiology , Guanine Nucleotide Exchange Factors , Mice , Nucleus Accumbens/metabolism , Quinpirole/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/metabolism
7.
Behav Brain Res ; 366: 135-141, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30851319

ABSTRACT

Hypobaric hypoxia (HH) is an environmental stress encountered at high altitude. It has been shown that HH resulted in spine atrophy and working memory deficits. Kalirin-7, a postsynaptic density protein, plays an important and key role in regulating spine dynamics and its plasticity. Spine atrophy is implicated in HH induced memory deficits but role of Kalirin-7 in this phenomenon is not studied. Present study is therefore designed to investigate the effect of chronic HH exposure on Kalirin-7 expression in hippocampus and its role in spatial working memory deficits. Adult rats (n = 12, 3 months old) were exposed to a simulated altitude of 25,000 feet for 7 days. Following HH exposure, spatial working memory was assessed with Radial arm maze and T maze. Hippocampal expression of Kalrin-7 was estimated at mRNA and protein levels. Results of behavioural experiments showed that HH causes significant decrease in the spatial working memory. There was a significant reduction in the protein expression of Kalirin-7 in the hippocampus of hypoxia exposed rats (43.89 ± 7.43) as compared to the control (69.54 ± 10.99). The mRNA expression of Kalrin-7 also exhibits significant reduction (0.59 ± 0.05) in the exposed group as compared to the control (0.98 ± 0.07). Immunohistochemistry showed that Kalirin-7 is decreased significantly in CA1, CA3 and DG regions of the hippocampus. Moreover, memory deficits are significantly correlated with decreased immunoreactivity of the hippocampal Kalirin-7. In conclusion, it can be said therefore, that change in Kalirin-7 expression in the hippocampus is associated with HH induced working memory deficit.


Subject(s)
Altitude Sickness/metabolism , Guanine Nucleotide Exchange Factors/biosynthesis , Memory, Short-Term/physiology , Altitude , Animals , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Maze Learning/drug effects , Memory Disorders/etiology , Rats , Rats, Sprague-Dawley
8.
Behav Brain Res ; 356: 148-155, 2019 01 01.
Article in English | MEDLINE | ID: mdl-29949735

ABSTRACT

Serotonin 5-HT1B receptors (5-HT1BRs) are distributed in hippocampal CA1 and play a pivotal role in cognitive function. Activation of 5-HT1BRs regulates synaptic plasticity at the excitatory synapses in the hippocampus. However, the role and its underlying mechanism of 5-HT1BR activation-mediated glutamatergic synaptic plasticity in spatial memory are not fully understood. In this study, spatial memory of Sprague-Dawley (SD) rats was assessed in a Morris water maze after bilateral dorsal hippocampal CA1 infusion of the 5-HT1BR antagonist GR55562 (25 µg/µL) or agonist CP93129 (25 µg/µL). GR55562 did not affect the spatial memory acquisition but significantly increased the target quadrant preference during the memory consolidation probe performed 14 d after the training session, while CP93129 impaired the memory consolidation process. Moreover, GR55562 significantly increased, while CP93129 significantly decreased, the density of dendritic spines on the distal apical dendrites of CA1 pyramidal neurons. Furthermore, western blot experiments indicated that GR55562 significantly increased, but CP93129 significantly reduced, the expression of Kalirin-7 (Kal-7), PSD95, and GluA2/3 subunits of AMPA receptors. Our results suggest that Kal-7 and Kal-7-mediatedalteration of AMPA receptor subtype expression may play crucial roles in the impact of hippocampal CA1 5-HT1BR activation on spatial memory consolidation.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Memory Consolidation/physiology , Spatial Memory/physiology , Animals , CA1 Region, Hippocampal/physiology , Dendritic Spines/metabolism , Gene Expression Regulation/genetics , Guanine Nucleotide Exchange Factors/genetics , Hippocampus/metabolism , Male , Maze Learning/physiology , Neuronal Plasticity , Pyramidal Cells/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin/metabolism , Synapses/metabolism
9.
Iran J Basic Med Sci ; 21(10): 992-997, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30524671

ABSTRACT

OBJECTIVES: The study explored the neuroprotective role of Kalirin-7 (Kal-7) in Neuro-2A cells after oxygen-glucose deprivation and reperfusion (OGD/R) treatment. MATERIALS AND METHODS: The study used an OGD/R model of mouse Neuro-2A neuroblastoma cells in vitro. Cells were transfected with pCAGGS-Kal-7 to up-regulating kal-7. Then cell proliferation and apoptosis were respectively analyzed by Trypan blue exclusion method and flow cytometry. To examine the involvement of Rac1, cells were treated with Rac1-GTP inhibitor NSC23766 before treatment with OGD/R. Expressions of Bax, Bcl-2, Rac1, and down-stream targets of Rac1 were analyzed by Western blot. RESULTS: Kal-7 significantly decreased OGD/R induced cell apoptosis (P<0.01), but no significant effects were observed on cell proliferation. Kal-7 increased the expressions of apoptosis-related protein of Bcl-2 and Rac1, but decreased the expression of Bax in Neuro-2A cells stimulated to OGD/R. Rac1 was activated by Kal-7 due to the increased levels of its down-stream targets, p-p38 and p-PAK1. NSC23766 reduced the anti-apoptotic effect of Kal-7 as the enhanced apoptotic cell rate and increased Bax/Bcl-2 ratio. CONCLUSION: These findings suggest that the protective effects of Kal-7 against OGD/R injury in Neuro-2A cells were dependent in a Rac1 activation signaling.

10.
Mol Neurobiol ; 55(4): 3426-3438, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28502042

ABSTRACT

Cdk5 kinase, a cyclin-dependent kinase family member, is a key regulator of cytoskeletal remodeling in the brain. Cdk5 is essential for brain development during embryogenesis. After birth, it is essential for numerous neuronal processes such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity is deregulated in various brain disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and ischemic stroke, resulting in profound remodeling of the neuronal cytoskeleton, loss of synapses, and ultimately neurodegeneration. This review focuses on the "good and bad" Cdk5 in the brain and its pleiotropic contribution in regulating neuronal actin cytoskeletal remodeling. A vast majority of physiological and pathological Cdk5 substrates are associated with the actin cytoskeleton. Thus, our special emphasis is on the numerous Cdk5 substrates identified in the past two decades such as ephexin1, p27, Mst3, CaMKv, kalirin-7, RasGRF2, Pak1, WAVE1, neurabin-1, TrkB, 5-HT6R, talin, drebrin, synapsin I, synapsin III, CRMP1, GKAP, SPAR, PSD-95, and LRRK2. These substrates have unraveled the molecular mechanisms by which Cdk5 plays divergent roles in regulating neuronal actin cytoskeletal dynamics both in healthy and diseased states.


Subject(s)
Actin Cytoskeleton/metabolism , Brain/metabolism , Cyclin-Dependent Kinase 5/metabolism , Animals , Humans , Models, Biological , Neurons/metabolism , Presynaptic Terminals/metabolism
11.
Mol Med ; 22: 905-917, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28079229

ABSTRACT

X-box binding protein 1 (XBP1) is a unique basic region leucine zipper transcription factor isolated two decades ago in a search for regulators of major histocompatibility complex class II gene expression. XBP1 is a very complex protein regulating many physiological functions, including immune system, inflammatory responses, and lipid metabolism. Evidence over the past few years suggests that XBP1 also plays important roles in pathological settings since its activity as transcription factor has profound effects on the prognosis and progression of diseases such as cancer, neurodegeneration, and diabetes. Here we provide an overview on recent advances in our understanding of this multifaceted molecule, particularly in regulating synaptic plasticity and memory function, and the implications in neurodegenerative diseases with emphasis on Alzheimer disease.

12.
Brain Pathol ; 26(6): 752-771, 2016 11.
Article in English | MEDLINE | ID: mdl-27529673

ABSTRACT

One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.


Subject(s)
Cognition Disorders/etiology , Cognition Disorders/therapy , Huntington Disease/complications , Animals , Brain/metabolism , Brain/pathology , Brain/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/therapeutic use , Disease Models, Animal , Guanine Nucleotide Exchange Factors/metabolism , Humans , Neural Pathways/physiology , Neuronal Plasticity/physiology , Protein Serine-Threonine Kinases/metabolism
13.
Neurobiol Dis ; 73: 137-49, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25193466

ABSTRACT

Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aß in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aß peptides, at least contribute to the disease. How Aß contributes to memory loss remains largely unknown. Soluble Aß species referred to as Aß oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aß oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aß oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Nervous System/metabolism , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL