Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943957

ABSTRACT

Organ-specific proteins (OSPs) possess great medical potential both in clinics and in biomedical research. Applications of them-such as alanine transaminase, aspartate transaminase, and troponins-in clinics have raised certain concerns of their organ specificity. The dynamics and diversity of protein expression in heterogeneous human populations are well known, yet their effects on OSPs are less addressed. Here, we used mice as a model and implemented a breadth study to examine the panorgan proteome for potential variations in organ specificity in different genetic backgrounds. Using reasonable resources, we generated panorgan proteomes of four in-bred mouse strains. The results revealed a large diversity that was more profound among OSPs than among proteomes overall. We defined a robustness score to quantify such variation and derived three sets of OSPs with different stringencies. In the meantime, we found that the enriched biological functions of OSPs are also organ-specific and are sensitive and useful to assess the quality of OSPs. We hope our breadth study can open doors to explore the molecular diversity and dynamics of organ specificity at the protein level.


Subject(s)
Organ Specificity/genetics , Proteins/genetics , Proteome/genetics , Proteomics , Animals , Genetic Variation/genetics , Humans , Mice
2.
Proteome Sci ; 18: 3, 2020.
Article in English | MEDLINE | ID: mdl-32336955

ABSTRACT

BACKGROUND: It has been previously shown that doxycycline (Doxy) protects the kidney from preservation injury by inhibition of matrix metalloproteinase. However, the precise molecular mechanism involved in this protection from injury is not known. We used a pharmaco-proteomics approach to identify potential molecular targets associated with kidney preservation injury. METHODS: Rat kidneys were cold perfused with or without doxycycline (Doxy) for 22 h. Kidneys perfusates were analyzed for the presence of injury markers such as lactate dehydrogenase (LDH), and neutrophil-gelatinase associated lipocalin (NGAL). Proteins extracted from kidney tissue were analyzed by 2-dimensional gel electrophoresis. Proteins of interest were identified by mass spectrometry. RESULTS: Triosephosphate isomerase, PGM, dihydropteridine reductase-2, pyridine nucleotide-disulfide oxidoreductase, phosphotriesterase-related protein, and aminoacylase-1A were not affected by cold perfusion. Perfusion with Doxy increased their levels. N(G),N(G)-dimethylarginine dimethylaminohydrolase and phosphoglycerate kinase 1 were decreased after cold perfusion. Perfusion with Doxy led to an increase in their levels. CONCLUSIONS: This study revealed specific metabolic enzymes involved in preservation injury and in the mechanism whereby Doxy protects the kidney against injury during cold perfusion.

3.
Data Brief ; 28: 105067, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31956673

ABSTRACT

The proteomic data presented in this article provide supporting information to the related research article "Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse model of Duchenne muscular dystrophy" (Dowling et al., 2019) [1]. This article supplies additional datasets on protein species with increased versus decreased concentration in the kidney from the dystrophic mdx-4cv mouse, as well as tables with mass spectrometrically identified kidney marker proteins that exhibit characteristic tissue distributions, subcellular localizations and physiological functions. Information is provided on the underlying multi-consensus protein listings from the proteomic screening of both wild type and mdx-4cv mouse kidneys. The data article provides comprehensive information on the systematic and mass spectrometric identification of the mouse kidney proteome.

4.
Physiol Rep ; 7(4): e13994, 2019 02.
Article in English | MEDLINE | ID: mdl-30806030

ABSTRACT

In diabetes mellitus (DM), the kidneys are exposed to increased levels of hyperglycemia-induced oxidative stress. Elevated amounts of reactive oxygen species (ROS) are believed to provoke ultrastructural changes in kidney tissue and can eventually result in DM late complications such as diabetic nephropathy. While it is reported that glucagon-like peptide 1 receptors (GLP-1R) are present in the kidney vasculature, the effects of GLP-1 on the kidney proteome in DM is not well described. Thus, we set out to investigate potential effects on the proteomic level. Here the effects of GLP-1R agonism using the GLP-1 analogue liraglutide are studied in the kidneys of streptozotocin (STZ)-treated mice (n = 6/group) by label-free shotgun mass spectrometry (MS) and targeted MS. Unsupervised and supervised multivariate analyses are followed by one-way ANOVA. Shotgun MS data of vehicle and liraglutide-treated mouse groups are separated in the supervised multivariate analysis and separation is also achieved in the subsequent unsupervised multivariate analysis using targeted MS data. The mouse group receiving the GLP-1R agonist liraglutide has increased protein abundances of glutathione peroxidase-3 (GPX3) and catalase (CATA) while the abundances of neuroplastin (NPTN) and bifunctional glutamate/proline-tRNA ligase (SYEP) are decreased compared to the STZ vehicle mice. The data suggest that GLP-1R agonism mainly influences abundances of structurally involved proteins and proteins involved in oxidative stress responses in the STZ mouse kidney. The changes could be direct effects of GLP-1R agonism in the kidneys or indirectly caused by a systemic response to GLP-1R activation.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Hypoglycemic Agents/pharmacology , Kidney/drug effects , Liraglutide/pharmacology , Proteome/drug effects , Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Animals , Catalase/genetics , Catalase/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetic Nephropathies/genetics , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Kidney/metabolism , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Proteome/genetics , Proteome/metabolism
5.
Physiol Rep ; 5(6)2017 Mar.
Article in English | MEDLINE | ID: mdl-28330952

ABSTRACT

Diabetes mellitus (DM) is a worldwide disease that affects 9% of the adult world population and type 2 DM accounts for 90% of those. A common consequence of DM is kidney complications, which could lead to kidney failure. We studied the potential effects of treatment with insulin and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide on the diabetic kidney proteome through the use of the db/db mouse model system and mass spectrometry (MS). Multivariate analyses revealed distinct effects of insulin and liraglutide on the db/db kidney proteome, which was seen on the protein levels of, for example, pterin-4 α-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1α (PCBD1), neural precursor cell expressed developmentally down-regulated-8 (NEDD8), transcription elongation factor-B polypeptide-1 (ELOC) and hepcidin (HEPC). Furthermore, the separation of the insulin, liraglutide and vehicle db/db mouse groups in multivariate analyses was not mainly related to the albumin excretion rate (AER) or the level of glycated hemoglobin A1c (HbA1c%) in the mice. In summary, we show that insulin and liraglutide give rise to separate protein profiles in the db/db mouse kidney.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Kidney/drug effects , Liraglutide/pharmacology , Proteome/drug effects , Animals , Elongin/metabolism , Hepcidins/metabolism , Hydro-Lyases/metabolism , Kidney/metabolism , Male , Mice , NEDD8 Protein/metabolism , Obesity/metabolism
6.
J Proteome Res ; 15(12): 4722-4730, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27809536

ABSTRACT

Here we assessed the ability of an automated sample preparation device equipped with disposable microcolumns to prepare mass-limited samples for high-sensitivity quantitative proteomics, using both label-free and isobaric labeling approaches. First, we compared peptide label-free quantification reproducibility for 1.5-150 µg of cell lysates and found that labware preconditioning was essential for reproducible quantification of <7.5 µg digest. Second, in-solution and on-column tandem mass tag (TMT) labeling protocols were compared and optimized for 1 µg of sample. Surprisingly, standard methods for in-solution and on-column labeling showed poor TMT labeling (50-85%); however, novel optimized and automated protocols restored efficient labeling to >98%. Third, compared with a single long gradient experiment, a simple robotized high-pH fractionation protocol using only 6 µg of starting material doubled the number of unique peptides and increased proteome coverage 1.43-fold. To facilitate the analysis of heterogeneous tissue samples, such as those obtained from laser capture microdissection, a modified BCA protein assay was developed that consumes and detects down to 15 ng of protein. As a proof-of-principle, the modular automated workflow was applied to 0.5 and 1 mm2 mouse kidney cortex and medulla microdissections to show the method's potential for real-life small sample sources and to create kidney substructure-specific proteomes.


Subject(s)
Kidney/ultrastructure , Proteome/analysis , Proteomics/methods , Animals , Kidney/chemistry , Kidney Cortex/chemistry , Kidney Medulla/chemistry , Laser Capture Microdissection , Mice , Reproducibility of Results , Sample Size , Staining and Labeling
7.
Mol Genet Metab ; 113(3): 200-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25069821

ABSTRACT

SCOPE: Hyperhomocysteinemia (HHcy) is associated with kidney disease and leads to atherosclerosis and thrombosis. Paraoxonase 1 (Pon1), a hydrolase that participates in homocysteine (Hcy) metabolism and is carried in the circulation on high-density lipoprotein, has also been linked to kidney disease and atherothrombosis. Pon1-knockout mice are susceptible to atherosclerosis and exhibit a kidney-associated phenotype, polyuria or urine dilution. We hypothesize that HHcy and Pon1 deficiency are toxic to kidney function because they impair metabolic pathways important for normal kidney homeostasis. METHODS AND RESULTS: We examined changes in the mouse kidney proteome induced by Pon1 gene deletion and dietary HHcy, using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We found that the expression of ten mouse kidney proteins was altered by the Pon1(-/-) genotype or HHcy. Proteins involved in metabolism of lipid (ApoA-I), protein (Hspd1), carbohydrate (Pdhb, Fbp1-isoform2, Eno1), and energy (Ndufs8, Ldhd) were down-regulated. Proteins involved in lipid transport (Pebp1), oxidative stress response (Prdx2), and cellular detoxification (Glo1) were up-regulated. The kidney proteins altered by HHcy or Pon1 are also altered in renal disease. CONCLUSION: Our findings suggest that excess Hcy is toxic because it deregulates the expression of proteins involved in diverse cellular processes-from lipid, protein, carbohydrate, and energy metabolisms to detoxification and antioxidant defenses-that are essential for normal kidney homeostasis. Dysregulation of these processes can account for the involvement of HHcy and reduced Pon1 in kidney disease. Our findings also show that Pon1 plays an important role in maintaining normal kidney homeostasis.


Subject(s)
Aryldialkylphosphatase/deficiency , Hyperhomocysteinemia/metabolism , Kidney/metabolism , Animals , Aryldialkylphosphatase/genetics , Gene Expression , Mice, Inbred C57BL , Proteome/metabolism
8.
Mol Genet Metab ; 112(4): 339-46, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913063

ABSTRACT

SCOPE: Hyperhomocysteinemia (HHcy) induced by dietary or genetic factors is linked to kidney disease. Bleomycin hydrolase (Blmh) metabolizes Hcy-thiolactone to Hcy. We aimed to explain the role of dietary HHcy in kidney disease. METHODS AND RESULTS: We examined kidney proteome in dietary HHcy and Blmh-knockout mouse models using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We found that the kidney proteome was altered by dietary HHcy and the Blmh(-/-) genotype. Proteins involved in metabolism of lipoprotein (ApoA1), amino acid and protein (Acy1, Hspd1), carbohydrate (Pdhb, Fbp1-isoform 1, Eno1), and energy metabolism (Ndufs8, Ldhd) were down-regulated. Proteins involved in carbohydrate metabolism (Fbp1-isoform 2), oxidative stress response (Prdx2), and detoxification (Glod4) were up-regulated. The Blmh(-/-) genotype down-regulated Glod4 isoform 3 mRNA but did not affect isoform 1 mRNA expression in mouse kidneys, suggesting post-transcriptional regulation of the Glod4 protein by the Blmh(+/+) genotype. Responses of ApoA1, Acy1, Hspd1, Ndufs8, Fbp1, Eno1, and Prdx2 to HHcy and/or Blmh deficiency mimic their responses to renal disease. CONCLUSION: Our findings indicate that Blmh interacts with diverse cellular processes--lipoprotein, amino acid and protein, carbohydrate, and energy metabolisms, detoxification, antioxidant defenses--that are essential for normal kidney homeostasis and that deregulation of these processes can account for the involvement of HHcy in kidney disease.


Subject(s)
Cysteine Endopeptidases/deficiency , Hyperhomocysteinemia/enzymology , Kidney Diseases/enzymology , Kidney Diseases/pathology , Kidney/metabolism , Proteins/metabolism , Animals , Blotting, Western , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Diet , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation, Enzymologic , Genotype , Hyperhomocysteinemia/genetics , Hyperhomocysteinemia/pathology , Isoelectric Focusing , Methionine , Mice, Inbred C57BL , Protein Isoforms/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL