Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Scand J Med Sci Sports ; 34(7): e14688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973702

ABSTRACT

AIM: To assess the impact of endurance training on skeletal muscle release of H+ and K+. METHODS: Nine participants performed one-legged knee extension endurance training at moderate and high intensities (70%-85% of Wpeak), three to four sessions·week-1 for 6 weeks. Post-training, the trained and untrained (control) leg performed two-legged knee extension at low, moderate, and high intensities (40%, 62%, and 83% of Wpeak) in normoxia and hypoxia (~4000 m). The legs were exercised simultaneously to ensure identical arterial inflow concentrations of ions and metabolites, and identical power output was controlled by visual feedback. Leg blood flow was measured (ultrasound Doppler), and acid-base variables, lactate- and K+ concentrations were assessed in arterial and femoral venous blood to study K+ and H+ release. Ion transporter abundances were assessed in muscle biopsies. RESULTS: Lactate-dependent H+ release was similar in hypoxia to normoxia (p = 0.168) and was lower in the trained than the control leg at low-moderate intensities (p = 0.060-0.006) but similar during high-intensity exercise. Lactate-independent and total H+ releases were higher in hypoxia (p < 0.05) and increased more with power output in the trained leg (leg-by-power output interactions: p = 0.02). K+ release was similar at low intensity but lower in the trained leg during high-intensity exercise in normoxia (p = 0.024) and hypoxia (p = 0.007). The trained leg had higher abundances of Na+/H+ exchanger 1 (p = 0.047) and Na+/K+ pump subunit α (p = 0.036). CONCLUSION: Moderate- to high-intensity endurance training increases lactate-independent H+ release and reduces K+ release during high-intensity exercise, coinciding with increased Na+/H+ exchanger 1 and Na+/K+ pump subunit α muscle abundances.


Subject(s)
Endurance Training , Hypoxia , Lactic Acid , Leg , Muscle, Skeletal , Potassium , Humans , Potassium/metabolism , Potassium/blood , Hypoxia/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Leg/blood supply , Adult , Lactic Acid/blood , Young Adult , Protons , Regional Blood Flow , Sodium-Potassium-Exchanging ATPase/metabolism , Exercise/physiology , Sodium-Hydrogen Exchanger 1/metabolism
2.
Mol Biol Rep ; 46(5): 4817-4826, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31270757

ABSTRACT

Oligodendrocyte precursor cells (OPC) are a uniformly distributed population of glial cells that are well known for proliferating and differentiating into mature oligodendrocytes to form the myelin sheet in the central nervous system (CNS). Since monocarboxylate transporter 1 (MCT1) has shown to be expressed by oligodendroglia, the involvement of these cells with the metabolic support to axons has emerged as an important role in the maintenance of neuronal functionality. Hyperglycemia is a metabolic dysfunction highly associated with oxidative stress, a classical feature linked to many disorders such as diabetes mellitus. Despite of being widely investigated in several different cell cultures, including astrocytes and neurons, such condition has been poorly investigated in OPC culture. Thus, the aim of this study was to explore the possible effects of high-glucose exposure in acute and chronic conditions on oligodendroglial development and functionality in vitro. In this sense, we have demonstrated that under high-glucose exposure OPC improved its differentiation rate without affecting its membrane integrity and its morphology. Besides, chronic high-glucose condition also increased glucose uptake and lactate release. On the other hand, our findings also showed that, unlike what happens in other glial cells and neurons, high-glucose exposure did not seem to induce oxidative stress in OPC culture. Therefore, as far as we have investigated in this present study, we suggest that OPC may be able to support neurons and other glial cells during hyperglycemia events.


Subject(s)
Cell Differentiation , Energy Metabolism , Glucose/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Animals , Biomarkers , Blood Glucose , Cell Differentiation/drug effects , Cell Survival/drug effects , Energy Metabolism/drug effects , Glucose/pharmacology , Hyperglycemia/metabolism , Immunophenotyping , Lactic Acid/biosynthesis , Oligodendroglia/drug effects , Oxidation-Reduction , Rats
3.
Methods Mol Biol ; 1742: 81-93, 2018.
Article in English | MEDLINE | ID: mdl-29330792

ABSTRACT

Hypoxia is frequently observed in human cancers and induces global metabolic reprogramming that includes an increase in glucose uptake and glycolysis, alterations in NAD(P)H/NAD(P)+ and intracellular ATP levels, and increased utilization of glutamine as the major precursor for fatty acid synthesis. In this chapter, we describe in detail various physiological assays that have been adopted to study the metabolic shift propagated by exposure to hypoxic conditions in pancreatic cell culture model that includes glucose uptake, glutamine uptake, and lactate release by pancreatic cancer cell lines. We have also elaborated the assays to evaluate the ratio of NAD(P)H/NAD(P)+ and intracellular ATP estimation using the commercially available kit to assess the metabolic state of cancer cells.


Subject(s)
Glucose/metabolism , Glutamine/metabolism , Lactic Acid/metabolism , Pancreatic Neoplasms/metabolism , Adenosine Triphosphate/metabolism , Cell Culture Techniques , Cell Hypoxia , Cell Line, Tumor , Energy Metabolism , Glycolysis , Humans , NADP/metabolism
4.
Neuroscience ; 370: 27-36, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28668486

ABSTRACT

In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, l-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high potassium ion (K+) concentrations - possibly because noradrenaline in contrast to high K+ stimulates glycogenolysis by an increase not only in free cytosolic Ca2+ concentration ([Ca2+]i) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K+ and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K+ following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released l-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), including induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning, LTP and all related molecular events, but all changes can be reversed by injection of l-lactate. The effect of extracellular l-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines.


Subject(s)
Astrocytes/metabolism , Glycogenolysis , Learning/physiology , Neurons/metabolism , Animals
5.
J Cereb Blood Flow Metab ; 37(9): 3231-3242, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28071964

ABSTRACT

The cerebral metabolic rate of oxygen (CMRO2) is reduced during apnea that yields profound hypoxia and hypercapnia. In this study, to dissociate the impact of hypoxia and hypercapnia on the reduction in CMRO2, 11 breath-hold competitors completed three apneas under: (a) normal conditions (NM), yielding severe hypercapnia and hypoxemia, (b) with prior hyperventilation (HV), yielding severe hypoxemia only, and (c) with prior 100% oxygen breathing (HX), yielding the greatest level of hypercapnia, but in the absence of hypoxemia. The CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-jugular venous oxygen content difference (cannulation). Secondary measures included net-cerebral glucose/lactate exchange and nonoxidative metabolism. Reductions in CMRO2 were largest in the HX condition (-44 ± 15%, p < 0.05), with the most severe hypercapnia (PaCO2 = 58 ± 5 mmHg) but maintained oxygen saturation. The CMRO2 was reduced by 24 ± 27% in NM ( p = 0.05), but unchanged in the HV apnea where hypercapnia was absent. A net-cerebral lactate release was observed at the end of apnea in the HV and NM condition, but not in the HX apnea (main effect p < 0.05). These novel data support hypercapnia/pH as a key mechanism mediating reductions in CMRO2 during apnea, and show that severe hypoxemia stimulates lactate release from the brain.


Subject(s)
Apnea/metabolism , Cerebral Cortex/metabolism , Hypercapnia/metabolism , Oxidative Stress , Adult , Apnea/physiopathology , Blood Flow Velocity/physiology , Breath Holding , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Female , Humans , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Jugular Veins , Lactic Acid/metabolism , Male , Oxygen/blood
6.
J Neurochem ; 125(2): 247-59, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23346911

ABSTRACT

α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K(+) homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [(14)C]metabolites during sensory stimulation. Conscious KO and wild-type mice were pulse-labeled with [6-(14)C] glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [(14)C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (p < 0.05) in inferior colliculus of KO mice, not wild-type mice. However, there were no labeling differences between KO and wild-type mice for five major HPLC fractions from four dissected regions, presumably because of insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes.


Subject(s)
Aquaporin 4/metabolism , Brain/physiology , Calcium-Binding Proteins/metabolism , Glucose/metabolism , Membrane Proteins/metabolism , Muscle Proteins/metabolism , Acoustic Stimulation , Animals , Autoradiography , Calcium-Binding Proteins/deficiency , Carbon Radioisotopes , Chromatography, High Pressure Liquid , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/deficiency , Physical Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL