Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Mol Phylogenet Evol ; 198: 108116, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38871263

ABSTRACT

While genetic variation in any species is potentially shaped by a range of processes, phylogeography and landscape genetics are largely concerned with inferring how environmental conditions and landscape features impact neutral intraspecific diversity. However, even as both disciplines have come to utilize SNP data over the last decades, analytical approaches have remained for the most part focused on either broad-scale inferences of historical processes (phylogeography) or on more localized inferences about environmental and/or landscape features (landscape genetics). Here we demonstrate that an artificial intelligence model-based analytical framework can consider both deeper historical factors and landscape-level processes in an integrated analysis. We implement this framework using data collected from two Brazilian anurans, the Brazilian sibilator frog (Leptodactylus troglodytes) and granular toad (Rhinella granulosa). Our results indicate that historical demographic processes shape most the genetic variation in the sibulator frog, while landscape processes primarily influence variation in the granular toad. The machine learning framework used here allows both historical and landscape processes to be considered equally, rather than requiring researchers to make an a priori decision about which factors are important.


Subject(s)
Anura , Artificial Intelligence , Genetic Variation , Phylogeography , Animals , Anura/genetics , Anura/classification , Brazil , Genetics, Population , Models, Genetic , Polymorphism, Single Nucleotide
2.
Genes (Basel) ; 14(7)2023 07 14.
Article in English | MEDLINE | ID: mdl-37510346

ABSTRACT

On a planet experiencing constant human population growth, it is necessary to explore the anthropogenic effects on the genetic diversity of species, and specifically invasive species. Using an analysis that integrates comparative phylogeography, urban landscape genetics, macrogenetics and a systematic review, we explore the worldwide genetic diversity of the human commensal and anthropogenic species Rattus rattus and Rattus norvegicus. Based on metadata obtained considering 35 selected studies related to observed heterozygosity, measured by nuclear molecular markers (microsatellites, Single Nucleotide Polymorphisms-SNPs-, restrictition site-associated DNA sequencing -RAD-Seq-), socioeconomic and mobility anthropogenic factors were used as predictors of genetic diversity of R. rattus and R. norvegicus, using the Gini index, principal component analysis and Random Forest Regression as analysis methodology. Population density was on average the best predictor of genetic diversity in the Rattus species analyzed, indicating that the species respond in a particular way to the characteristics present in urban environments because of a combination of life history characteristics and human-mediated migration and colonization processes. To create better management and control strategies for these rodents and their associated diseases, it is necessary to fill the existing information gap in urban landscape genetics studies with more metadata repositories, with emphasis on tropical and subtropical regions of the world.


Subject(s)
Introduced Species , Microsatellite Repeats , Humans , Rats , Animals , Population Density , Phylogeography , Polymorphism, Single Nucleotide/genetics
3.
Front Genet ; 14: 1103969, 2023.
Article in English | MEDLINE | ID: mdl-37351341

ABSTRACT

Macrophomina phaseolina causes charcoal rot, which can significantly reduce yield and seed quality of soybean and dry bean resulting from primarily environmental stressors. Although charcoal rot has been recognized as a warm climate-driven disease of increasing concern under global climate change, knowledge regarding population genetics and climatic variables contributing to the genetic diversity of M. phaseolina is limited. This study conducted genome sequencing for 95 M. phaseolina isolates from soybean and dry bean across the continental United States, Puerto Rico, and Colombia. Inference on the population structure using 76,981 single nucleotide polymorphisms (SNPs) revealed that the isolates exhibited a discrete genetic clustering at the continental level and a continuous genetic differentiation regionally. A majority of isolates from the United States (96%) grouped in a clade with a predominantly clonal genetic structure, while 88% of Puerto Rican and Colombian isolates from dry bean were assigned to a separate clade with higher genetic diversity. A redundancy analysis (RDA) was used to estimate the contributions of climate and spatial structure to genomic variation (11,421 unlinked SNPs). Climate significantly contributed to genomic variation at a continental level with temperature seasonality explaining the most variation while precipitation of warmest quarter explaining the most when spatial structure was accounted for. The loci significantly associated with multivariate climate were found closely to the genes related to fungal stress responses, including transmembrane transport, glycoside hydrolase activity and a heat-shock protein, which may mediate climatic adaptation for M. phaseolina. On the contrary, limited genome-wide differentiation among populations by hosts was observed. These findings highlight the importance of population genetics and identify candidate genes of M. phaseolina that can be used to elucidate the molecular mechanisms that underly climatic adaptation to the changing climate.

4.
Trop Anim Health Prod ; 54(6): 378, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36355244

ABSTRACT

This study purposes to examine the distribution of A2A2 alleles in herds of Curraleiro Pé-Duro (CPD) cattle and test association patterns with geographical and municipal development data. Eight CPD herds were selected from the municipalities of Tocantins State, Brazil. The frequency of the A1 and A2 allele was 40.0 and 60.0%, and the frequencies of genotypes A1A1, A1A2, and A2A2 were 20.0, 39.0, and 41.0%, respectively. Correlation estimates supported that the preferred genotype (A2A2) was mostly present in the relatively higher developed mesoregion (West) (P < 0.05). However, genotypic frequencies varied at random according to human population of municipalities and human development index (P > 0.05). The evaluation of the variability of the ß-casein gene polymorphism, coupled with spatially explicit methods (spatial autocorrelation, mantel test, and interpolation procedures), revealed some level of spatial dependency. The results suggest that the production of A2A2 milk in indigenous CPD cattle is feasible. This will depend on the adoption of selection schemes.


Subject(s)
Caseins , Polymorphism, Genetic , Cattle/genetics , Humans , Animals , Caseins/genetics , Milk , Genotype , Alleles
5.
Ecol Evol ; 12(10): e9406, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36248671

ABSTRACT

The phylogeography of the American black bear (Ursus americanus) is characterized by isolation into glacial refugia, followed by population expansion and genetic admixture. Anthropogenic activities, including overharvest, habitat loss, and transportation infrastructure, have also influenced their landscape genetic structure. We describe the genetic structure of the American black bear in the American Southwest and northern Mexico and investigate how prehistoric and contemporary forces shaped genetic structure and influenced gene flow. Using a suite of microsatellites and a sample of 550 bears, we identified 14 subpopulations organized hierarchically following the distribution of ecoregions and mountain ranges containing black bear habitat. The pattern of subdivision we observed is more likely a product of postglacial habitat fragmentation during the Pleistocene and Holocene, rather than a consequence of contemporary anthropogenic barriers to movement during the Anthropocene. We used linear mixed-effects models to quantify the relationship between landscape resistance and genetic distance among individuals, which indicated that both isolation by resistance and geographic distance govern gene flow. Gene flow was highest among subpopulations occupying large tracts of contiguous habitat, was reduced among subpopulations in the Madrean Sky Island Archipelago, where montane habitat exists within a lowland matrix of arid lands, and was essentially nonexistent between two isolated subpopulations. We found significant asymmetric gene flow supporting the hypothesis that bears expanded northward from a Pleistocene refugium located in the American Southwest and northern Mexico and that major highways were not yet affecting gene flow. The potential vulnerability of the species to climate change, transportation infrastructure, and the US-Mexico border wall highlights conservation challenges and opportunities for binational collaboration.

6.
BMC Ecol Evol ; 21(1): 196, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702161

ABSTRACT

BACKGROUND: Historical and ecological processes shape patterns of genetic diversity in plant species. Colonization to new environments and geographical landscape features determine, amongst other factors, genetic diversity within- and differentiation between-populations. We analyse the genetic diversity and population structure of Calibrachoa heterophylla to infer the influence of abiotic landscape features on the level of gene flow in this coastal species of the South Atlantic Coastal Plain. RESULTS: The C. heterophylla populations located on early-deposited coastal plain regions show higher genetic diversity than those closer to the sea. The genetic differentiation follows a pattern of isolation-by-distance. Landscape features, such as water bodies and wind corridors, and geographical distances equally explain the observed genetic differentiation, whereas the precipitation seasonality exhibits a strong signal for isolation-by-environment in marginal populations. The estimated levels of gene flow suggest that marginal populations had restricted immigration rates enhancing differentiation. CONCLUSIONS: Topographical features related to coastal plain deposition history influence population differentiation in C. heterophylla. Gene flow is mainly restricted to nearby populations and facilitated by wind fields, albeit without any apparent influence of large water bodies. Furthermore, differential rainfall regimes in marginal populations seem to promote genetic differentiation.


Subject(s)
Gene Flow , Genetic Variation , Geography , South America
7.
Trop Anim Health Prod ; 53(2): 260, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33852073

ABSTRACT

This study was realized to analyze the combinations of climatic, physical, and socio-economic variables on distribution of breeding values for performance characteristics and scrotal circumference of Brangus cattle. Records of 84,703 Brangus animals, born from 2000 to 2010 distributed in 65 farms in Brazil were used. The characteristics analyzed were average daily gain from birth to weaning and from weaning to yearling (WW and YW), visual scores of conformations (WC and YC), muscle score (WM and YM), precocity score (WP and YS), and size score (WS and YS) at weaning and yearling and scrotal circumference (SC) at yearling. Components of (co)variance estimated through the animal model employing methodology to AIREML. Mean estimates of direct heritability obtained for visual scores at weaning (WC 0.16, WM 0.16, WP 0.19, and WS 0.22) were lower than those obtained at yearling (YC 0.28, YM 0.26, YP 0.24, and YS 0.40). WW had heritability greater than YW (0.27 and 0.12) and a heritability of 0.36 obtained for SC. Canonical, discriminant, and cluster analyses were performed in the SAS® 9.4 program. Three clusters of genetic values averages per farm were formed according to climatic, physical, and socio-economic variables. Brangus animals are from states of RS, PR, SP, MG, GO, MG, and MS. The highest breeding values were strongly related to thermal amplitude and municipality area. Spatial distribution of the breeding value of Brangus animals can help in the development of environmental indices, genetic evaluations, and the choice of animals for certain environments.


Subject(s)
Economic Factors , Scrotum , Animals , Body Weight , Brazil , Cattle/genetics , Male , Weaning
8.
Ecol Appl ; 31(3): e02254, 2021 04.
Article in English | MEDLINE | ID: mdl-33159398

ABSTRACT

Ecological niche models (ENMs) have classically operated under the simplifying assumptions that there are no barriers to gene flow, species are genetically homogeneous (i.e., no population-specific local adaptation), and all individuals share the same niche. Yet, these assumptions are violated for most broadly distributed species. Here, we incorporate genetic data from the widespread riparian tree species narrowleaf cottonwood (Populus angustifolia) to examine whether including intraspecific genetic variation can alter model performance and predictions of climate change impacts. We found that (1) P. angustifolia is differentiated into six genetic groups across its range from México to Canada and (2) different populations occupy distinct climate niches representing unique ecotypes. Comparing model discriminatory power, (3) all genetically informed ecological niche models (gENMs) outperformed the standard species-level ENM (3-14% increase in AUC; 1-23% increase in pROC). Furthermore, (4) gENMs predicted large differences among ecotypes in both the direction and magnitude of responses to climate change and (5) revealed evidence of niche divergence, particularly for the Eastern Rocky Mountain ecotype. (6) Models also predicted progressively increasing fragmentation and decreasing overlap between ecotypes. Contact zones are often hotspots of diversity that are critical for supporting species' capacity to respond to present and future climate change, thus predicted reductions in connectivity among ecotypes is of conservation concern. We further examined the generality of our findings by comparing our model developed for a higher elevation Rocky Mountain species with a related desert riparian cottonwood, P. fremontii. Together our results suggest that incorporating intraspecific genetic information can improve model performance by addressing this important source of variance. gENMs bring an evolutionary perspective to niche modeling and provide a truly "adaptive management" approach to support conservation genetic management of species facing global change.


Subject(s)
Climate Change , Ecosystem , Populus/genetics , Adaptation, Physiological , Canada , Mexico
9.
J Hered ; 111(5): 457-470, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32827440

ABSTRACT

Biogeographic barriers such as rivers have been shown to shape spatial patterns of biodiversity in the Amazon basin, yet relatively little is known about the distribution of genetic variation across continuous rainforest. Here, we characterize the genetic structure of the brilliant-thighed poison frog (Allobates femoralis) across an 880-km-long transect along the Purus-Madeira interfluve south of the Amazon river, based on 64 individuals genotyped at 7609 single-nucleotide polymorphism (SNP) loci. A population tree and clustering analyses revealed 4 distinct genetic groups, one of which was strongly divergent. These genetic groups were concomitant with femoral spot coloration differences, which was intermediate within a zone of admixture between two of the groups. The location of these genetic groups did not consistently correspond to current ecological transitions between major forest types. A multimodel approach to quantify the relative influence of isolation-by-geographic distance (IBD) and isolation-by-environmental resistance (IBR) nevertheless revealed that, in addition to a strong signal of IBD, spatial genetic differentiation was explained by IBR primarily linked to dry season intensity (r2 = 8.4%) and canopy cover (r2 = 6.4%). We show significant phylogenetic divergence in the absence of obvious biogeographical barriers and that finer-scaled measures of genetic structure are associated with environmental variables also known to predict the density of A. femoralis.


Subject(s)
Anura/genetics , Environment , Gene-Environment Interaction , Genetic Structures , Genetic Variation , Rainforest , Animals , Biodiversity , Genetics, Population , Genotype , Phylogeny , Polymorphism, Single Nucleotide
10.
PeerJ ; 8: e9177, 2020.
Article in English | MEDLINE | ID: mdl-32509461

ABSTRACT

The populations of Humboldtiana durangoensis have experienced a drastic reduction in the effective population size; in addition, the species is threatened by anthropogenic activities. For the aforementioned, landscape genetics will serve as a tool to define the potential evolutionarily significant units (ESU) for this species. To complete our objective, we evaluated the effect of cover vegetation and climate on the functional connectivity of the species from the last glacial maximum (LGM) to the present as well as the effect of climate on shell shape. Partial Mantel tests, distance-based redundance analysis and a Bayesian framework were used to evaluate connectivity. On the other hand, geometric morphometrics, phylogenetic principal component analysis and redundancy analysis were used for the analysis of shell shape. Our results suggest that the suitable areas have been decreasing since the LGM; also, vegetation cover rather than climate has influenced the genetic connectivity among land snail populations, although temperature had a high influence on shell shape in this species. In conclusion, vegetation cover was the main factor that determined the functional connectivity for the land snail; however, local selective pressures led to different phenotypes in shell shape that allowed us to postulate that each one of the previously defined genetic groups must be considered as a different ESU.

11.
Mol Ecol ; 29(12): 2204-2217, 2020 06.
Article in English | MEDLINE | ID: mdl-32419208

ABSTRACT

The wild currant tomato Solanum pimpinellifolium inhabits a wide range of abiotic habitats across its native range of Ecuador and Peru. Although it has served as a key genetic resource for the improvement of domestic cultivars, little is known about the genetic basis of traits underlying local adaptation in this species, nor what abiotic variables are most important for driving differentiation. Here we use redundancy analysis (RDA) and other multivariate statistical methods (structural equation modelling [SEM] and generalized dissimilarity modelling [GDM]) to quantify the relationship of genomic variation (6,830 single nucleotide polymorphisms [SNPs]) with climate and geography, among 140 wild accessions. RDA, SEM and GDM each identified environment as explaining more genomic variation than geography, suggesting that local adaptation to heterogeneous abiotic habitats may be an important source of genetic diversity in this species. Environmental factors describing temporal variation in precipitation and evaporative demand explained the most SNP variation among accessions, indicating that these forces may represent key selective agents. Lastly, by studying how SNP-environment associations vary throughout the genome (44,064 SNPs), we mapped the location and investigated the functions of loci putatively contributing to climatic adaptations. Together, our findings indicate an important role for selection imposed by the abiotic environment in driving genomic differentiation between populations.


Subject(s)
Environment , Genetics, Population , Solanum/genetics , Ecuador , Genomics , Multivariate Analysis , Peru , Polymorphism, Single Nucleotide
12.
Front Genet ; 11: 259, 2020.
Article in English | MEDLINE | ID: mdl-32269588

ABSTRACT

Changes in landscape structure can affect essential population ecological features, such as dispersal and recruitment, and thus genetic processes. Here, we analyze the effects of landscape metrics on adaptive quantitative traits variation, evolutionary potential, and on neutral genetic diversity in populations of the Neotropical savanna tree Tabebuia aurea. Using a multi-scale approach, we sampled five landscapes with two sites of savanna in each. To obtain neutral genetic variation, we genotyped 60 adult individuals from each site using 10 microsatellite loci. We measured seed size and mass. Seeds were grown in nursery in completely randomized experimental design and 17 traits were measured in seedlings to obtain the average, additive genetic variance (V a ) and coefficient of variation (CV a %), which measures evolvability, for each trait. We found that habitat loss increased genetic diversity (He) and allelic richness (AR), and decreased genetic differentiation among populations (F ST ), most likely due to longer dispersal distance of pollen in landscapes with lower density of flowering individuals. Habitat amount positively influenced seed size. Seeds of T. aurea are wind-dispersed and larger seeds may be dispersed to short distance, increasing genetic differentiation and decreasing genetic diversity and allelic richness. Evolvability (CV a %) in root length decreased with habitat amount. Savanna trees have higher root than shoot growth rate in the initial stages, allowing seedlings to obtain water from water tables. Landscapes with lower habitat amount may be more stressful for plant species, due to the lower plant density, edge effects and the negative impacts of agroecosystems. In these landscapes, larger roots may provide higher ability to obtain water, increasing survival and avoiding dying back because of fire. Despite the very recent agriculture expansion in Central Brazil, landscape changes are affecting neutral and adaptive variation in T. aurea. Several populations have low additive genetic variation for some traits and thus, may have limited evolvability, which may jeopardize species long-term persistence. The effect of habitat loss on highly variable neutral loci may only be detected after a certain threshold of population size is attained, that could become dangerously small masking important losses of heterozygosity endangering species conservation.

13.
Front Genet ; 11: 606222, 2020.
Article in English | MEDLINE | ID: mdl-33613620

ABSTRACT

Plants are one of the most vulnerable groups to fragmentation and habitat loss, that may affect community richness, abundance, functional traits, and genetic diversity. Here, we address the effects of landscape features on adaptive quantitative traits and evolutionary potential, and on neutral genetic diversity in populations of the Neotropical savanna tree Caryocar brasiliense. We sampled adults and juveniles in 10 savanna remnants within five landscapes. To obtain neutral genetic variation, we genotyped all individuals from each site using nine microsatellite loci. For adaptive traits we measured seed size and mass and grown seeds in nursery in completely randomized experimental design. We obtained mean, additive genetic variance (V a ) and coefficient of variation (CV a %), which measures evolvability, for 17 traits in seedlings. We found that landscapes with higher compositional heterogeneity (SHDI) had lower evolutionary potential (CV a %) in leaf length (LL) and lower aboveground dry mass (ADM) genetic differentiation (Q ST ). We also found that landscapes with higher SHDI had higher genetic diversity (He) and allelic richness (AR) in adults, and lower genetic differentiation (F ST ). In juveniles, SHDI was also positively related to AR. These results are most likely due to longer dispersal distance of pollen in landscapes with lower density of flowering individuals. Agricultural landscapes with low quality mosaic may be more stressful for plant species, due to the lower habitat cover (%), higher cover of monocropping (%) and other land covers, and edge effects. However, in landscapes with higher SHDI with high quality mosaic, forest nearby savanna habitat and the other environments may facilitate the movement or provide additional habitat and resources for seed disperses and pollinators, increasing gene flow and genetic diversity. Finally, despite the very recent agriculture expansion in Central Brazil, we found no time lag in response to habitat loss, because both adults and juveniles were affected by landscape changes.

14.
Mol Ecol ; 29(1): 40-55, 2020 01.
Article in English | MEDLINE | ID: mdl-31710739

ABSTRACT

Epigenetic changes can provide a pathway for organisms to respond to local environmental conditions by influencing gene expression. However, we still know little about the spatial distribution of epigenetic variation in natural systems, how it relates to the distribution of genetic variation and the environmental structure of the landscape, and the processes that generate and maintain it. Studies examining spatial patterns of genetic and epigenetic variation can provide valuable insights into how ecological and population processes contribute to epigenetic divergence across heterogeneous landscapes. Here, we perform a comparative analysis of spatial genetic and epigenetic variation based on 8,459 single nucleotide polymorphisms (SNPs) and 8,580 single methylation variants (SMVs) from eight populations of the Puerto Rican crested anole, Anolis cristatellus, an abundant lizard in the adaptive radiations of anoles on the Greater Antilles that occupies a diverse range of habitats. Using generalized dissimilarity modelling and multiple matrix regression, we found that genome-wide epigenetic differentiation is strongly correlated with environmental divergence, even after controlling for the underlying genetic structure. We also detected significant associations between key environmental variables and 96 SMVs, including 42 located in promoter regions or gene bodies. Our results suggest an environmental basis for population-level epigenetic differentiation in this system and contribute to better understanding how environmental gradients structure epigenetic variation in nature.


Subject(s)
Ecology , Epigenesis, Genetic , Lizards/genetics , Animals , DNA Methylation , Ecosystem , Environment , Epigenomics , Genetics, Population , Male , Puerto Rico
15.
Front Genet ; 10: 1090, 2019.
Article in English | MEDLINE | ID: mdl-31788000

ABSTRACT

Habitat loss and the illegal exploitation of natural resources are among the main drivers of species extinction around the world. These disturbances act at different scales, once changes in the landscape composition and configuration operate at large scales and exploitation of natural resources at local scales. Evidence suggests that both scales are capable of triggering genetic erosion in the remaining populations. However, most of the studies so far did not evaluate simultaneously the effects of these disturbances on genetic diversity and structure of plants. In this study, we used a multiple scale approach to empirically evaluate the impacts caused by local and landscape scale disturbances in the genetic diversity and structure of an endangered palm tree, Euterpe edulis. We sampled and genotyped with microsatellite markers 544 juveniles of E. edulis in 17 fragments of Atlantic Forest in Brazil. In addition, we estimated the local logging rate and the forest cover and isolation at landscape scale. We found that the palm populations have not undergone any recent bottleneck events and that only logging intensification had affected the fixation index and the number of private alleles. Additionally, we did not detect any evidence of spatial genetic structure or genetic divergence associated with environmental disturbance variables at different scales. However, we identified distinct genetic clusters, which may indicate a reduction of gene flow between fragments that were previously a continuous habitat. Our results show that local disturbances, which act directly on population size reduction, such as logging, modified the genetic diversity more rapidly, whereas genetic structure is probably more influenced by large-scale modifications. In this way, to maximize the conservation efforts of economically exploited species, we recommend to increase the inspection to reduce the illegal exploitation, and reforestation of degraded areas, in order to increase the gene flow in Atlantic Forest fragments.

16.
PeerJ ; 7: e6446, 2019.
Article in English | MEDLINE | ID: mdl-30783576

ABSTRACT

The bulk of the world's biodiversity is found in tropical regions, which are increasingly threatened by the human-led degradation of natural habitats. Yet, little is known about tropical biodiversity responses to habitat loss and fragmentation. Here we review all available literature assessing landscape effects on gene flow in tropical species, aiming to help unravel the factors underpinning functional connectivity in the tropics. We map and classify studies by focus species, the molecular markers employed, statistical approaches to assess landscape effects on gene flow, and the evaluated landscape and environmental variables. We then compare qualitatively and quantitatively landscape effects on gene flow across species and units of analysis. We found 69 articles assessing landscape effects on gene flow in tropical organisms, most of which were published in the last five years, were concentrated in the Americas, and focused on amphibians or mammals. Most studies employed population-level approaches, microsatellites were the preferred type of markers, and Mantel and partial Mantel tests the most common statistical approaches used. While elevation, land cover and forest cover were the most common gene flow predictors assessed, habitat suitability was found to be a common predictor of gene flow. A third of all surveyed studies explicitly assessed the effect of habitat degradation, but only 14 of these detected a reduced gene flow with increasing habitat loss. Elevation was responsible for most significant microsatellite-based isolation by resistance effects and a single study reported significant isolation by non-forested areas in an ant. Our study reveals important knowledge gaps on the study of landscape effects on gene flow in tropical organisms, and provides useful guidelines on how to fill them.

17.
Genes (Basel) ; 9(8)2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30103436

ABSTRACT

We evaluated how differences between two empirical resistance models for the same geographic area affected predictions of gene flow processes and genetic diversity for the Mexican spotted owl (Strix occidentalis lucida). The two resistance models represented the landscape under low- and high-fragmentation parameters. Under low fragmentation, the landscape had larger but highly concentrated habitat patches, whereas under high fragmentation, the landscape had smaller habitat patches that scattered across a broader area. Overall habitat amount differed little between resistance models. We tested eight scenarios reflecting a factorial design of three factors: resistance model (low vs. high fragmentation), isolation hypothesis (isolation-by-distance, IBD, vs. isolation-by-resistance, IBR), and dispersal limit of species (200 km vs. 300 km). Higher dispersal limit generally had a positive but small influence on genetic diversity. Genetic distance increased with both geographic distance and landscape resistance, but landscape resistance displayed a stronger influence. Connectivity was positively related to genetic diversity under IBR but was less important under IBD. Fragmentation had a strong negative influence on the spatial patterns of genetic diversity and effective population size (Ns). Despite habitats being more concentrated and less widely distributed, the low-fragmentation landscape had greater genetic diversity than the high-fragmentation landscape, suggesting that highly concentrated but larger habitat patches may provide a genetic refuge for the Mexican spotted owl.

18.
Front Plant Sci ; 9: 532, 2018.
Article in English | MEDLINE | ID: mdl-29868042

ABSTRACT

Although genetic diversity ultimately determines the ability of organisms to adapt to environmental changes, conservation assessments like the widely used International Union for Conservation of Nature (IUCN) Red List Criteria do not explicitly consider genetic information. Including a genetic dimension into the IUCN Red List Criteria would greatly enhance conservation efforts, because the demographic parameters traditionally considered are poor predictors of the evolutionary resilience of natural populations to global change. Here we perform the first genomic assessment of genetic diversity, gene flow, and patterns of local adaptation in tropical plant species belonging to different IUCN Red List Categories. Employing RAD-sequencing we identified tens of thousands of single-nucleotide polymorphisms in an endangered narrow-endemic and a least concern widespread morning glory (Convolvulaceae) from Amazonian savannas, a highly threatened and under-protected tropical ecosystem. Our results reveal greater genetic diversity and less spatial genetic structure in the endangered species. Whereas terrain roughness affected gene flow in both species, forested and mining areas were found to hinder gene flow in the endangered plant. Finally we implemented environmental association tests and genome scans for selection, and identified a higher proportion of candidate adaptive loci in the widespread species. These mainly contained genes related to pathogen resistance and physiological adaptations to life in nutrient-limited environments. Our study emphasizes that IUCN Red List Criteria do not always prioritize species with low genetic diversity or whose genetic variation is being affected by habitat loss and fragmentation, and calls for the inclusion of genetic information into conservation assessments. More generally, our study exemplifies how landscape genomic tools can be employed to assess the status, threats and adaptive responses of imperiled biodiversity.

19.
Proc Biol Sci ; 285(1878)2018 05 16.
Article in English | MEDLINE | ID: mdl-29720414

ABSTRACT

Spatial and temporal scales at which processes modulate genetic diversity over the landscape are usually overlooked, impacting the design of conservation management practices for widely distributed species. We examine processes shaping population divergence in highly mobile species by re-assessing the case of panmixia in the iconic olive ridley turtle from the eastern Pacific. We implemented a biophysical model of connectivity and a seascape genetic analysis based on nuclear DNA variation of 634 samples collected from 27 nesting areas. Two genetically distinct populations largely isolated during reproductive migrations and mating were detected, each composed of multiple nesting sites linked by high connectivity. This pattern was strongly associated with a steep environmental gradient and also influenced by ocean currents. These findings relate to meso-scale features of a dynamic oceanographic interface in the eastern tropical Pacific (ETP) region, a scenario that possibly provides different cost-benefit solutions and selective pressures for sea turtles during both the mating and migration periods. We reject panmixia and propose a new paradigm for olive ridley turtles where reproductive isolation due to assortative mating is linked to its environment. Our study demonstrates the relevance of integrative approaches for assessing the role of environmental gradients and oceanographic currents as drivers of genetic differentiation in widely distributed marine species. This is relevant for the conservation management of species of highly mobile behaviour, and assists the planning and development of large-scale conservation strategies for the threatened olive ridley turtles in the ETP.


Subject(s)
Animal Distribution , Environment , Nesting Behavior , Turtles/physiology , Animals , Cell Nucleus/genetics , Central America , Conservation of Natural Resources , DNA/analysis , Mexico , Pacific Ocean , Turtles/genetics
20.
Genetica ; 145(6): 575-591, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28905157

ABSTRACT

Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomys "chasiquensis", a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. "chasiquensis" are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.


Subject(s)
Rodentia/genetics , Animals , Argentina , Ecosystem , Gene Flow , Genetic Variation , Genotyping Techniques , Linkage Disequilibrium , Microsatellite Repeats , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL