Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(32): e202405964, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38702293

ABSTRACT

Highly ordered assembly of two-dimensional (2D) nanoplatelets plays a key role in enhancing the mechanical properties of layered nanocomposites. Layer-by-layer (LbL) assembly, vacuum-assisted filtration, and blade coating have been used to fabricate layered nanocomposites. However, the intrinsic wrinkles of 2D nanoplatelets and defects derived from assembling approaches make it difficult to align 2D nanoplatelets. Recently, the team of Prof. Qunfeng Cheng at Beihang University and their collaborator, Prof. Ray H. Baughman at the University of Texas at Dallas developed a novel approach for aligning graphene and Ti3C2Tx MXene nanoplatelets by nanoconfined assembly through continuous vacuum-assisted filtration. The resultant MXene-bridged sheet has ultrastrong mechanical properties and low porosity, providing a new concept for assembling 2D nanoplatelets into aligned and compact high-performance layered nanocomposites.

2.
Small ; 19(24): e2208105, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36897001

ABSTRACT

Polymer-based dielectrics are essential components in electrical and power electronic systems for high power density storage and conversion. A mounting challenge for polymer dielectrics is how to maintain their electrical insulation at not only high electric fields but also elevated temperatures, in order to meet the growing needs for renewable energies and grand electrifications. Here, a sandwiched barium titanate/polyamideimide nanocomposite with reinforced interfaces via two-dimensional nanocoatings is presented. It is demonstrated that boron nitride and montmorillonite nanocoatings can block and dissipate injected charges, respectively, to present a synergetic effect on the suppression of conduction loss and the enhancement of breakdown strength. Ultrahigh energy densities of 2.6, 1.8, and 1.0 J cm-3 are obtained at 150 °C, 200 °C, and 250 °C, respectively, with a charge-discharge efficiency >90%, far outperforming the state-of-the-art high-temperature polymer dielectrics. Cyclic charge-discharge tests up to 10 000 times verify the excellent lifetime of the interface-reinforced sandwiched polymer nanocomposite. This work provides a new pathway to design high-performance polymer dielectrics for high-temperature energy storage via interfacial engineering.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36500792

ABSTRACT

Cellulose nanocrystals (CNCs) have received a significant amount of attention due to their excellent physiochemical properties. Herein, based on bioinspired layered materials with excellent mechanical properties, a CNCs-graphene layered structure with covalent linkages (C-C bond) is constructed. The mechanical properties are systematically studied by molecular dynamics (MD) simulations in terms of the effects of temperature, strain rate and the covalent bond content. Compared to pristine CNCs, the mechanical performance of the CNCs-graphene layered structure has significantly improved. The elastic modulus of the layered structure decreases with the increase of temperature and increases with the increase of strain rate and covalent bond coverage. The results show that the covalent bonding and van der Waals force interactions at the interfaces play an important role in the interfacial adhesion and load transfer capacity of composite materials. These findings can be useful in further modeling of other graphene-based polymers at the atomic scale, which will be critical for their potential applications as functional materials.

4.
Odontology ; 110(1): 35-43, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34156565

ABSTRACT

Dental composites are aesthetic materials widely used in Dentistry for replacing hard dental tissues lost due to caries or traumas. The aim of this study was to fabricate low-shrinkage dental composite charged with nanoclay fillers (montmorillonite Cloisite®-MMT) and evaluate their cytotoxicity and physicomechanical properties. Four dental composites were produced from the same organic matrix: Bis-GMA/TEGDMA (30 wt.%). The filler system was constituted of BaSi, SiO2, and MMT in the following concentrations (wt.%): 93.8/6.2/0, 89.1/5.9/5, 86.7/5.8/7.5, and 84.4/5.6/10 (E0: 0; E5: 5%; E7.5: 7.5%; E10: 10% of MMT nanoclays). The following properties were tested: in vitro cytotoxicity, flexural strength, elastic modulus, volumetric shrinkage, water sorption, water solubility, and hygroscopic expansion. Scanning electron microscopy was used to characterize composites' topography. Data were analyzed by one-way ANOVA and Tukey's HSD post hoc test (p < 0.05). MMT nanoclays did not affect the cytotoxicity. E5 and E7.5 groups showed a significant decrease in polymerization shrinkage while maintained the overall physicomechanical properties. The inclusion of 5 and 7.5 wt.% of MMT nanoclays allowed the fabrication of dental composites with low cytotoxicity and low polymerization shrinkage, without jeopardizing the overall behaviour of their physicomechanical properties (flexural strength, elastic modulus, water sorption, water solubility, and hygroscopic expansion). These aspects suggest that the usage of MMT nanoclays could be an effective strategy to formulate new dental composites with clinical applicability.


Subject(s)
Bentonite , Composite Resins , Bisphenol A-Glycidyl Methacrylate , Elastic Modulus , Materials Testing , Methacrylates , Polymerization , Polymethacrylic Acids , Silicon Dioxide , Surface Properties
5.
Biosens Bioelectron ; 56: 137-43, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24480133

ABSTRACT

The self-assembly of layered molybdenum disulfide-graphene (MoS2-Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP-MoS2-Gr) is reported. The properties of the MoS2-Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV-vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2-Gr nanocomposite. Furthermore, the HRP-MoS2-Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 µA mM(-1)cm(-2)), wide linear range (0.2 µM-1.103 mM), low detection limit (0.049 µM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2-Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.


Subject(s)
Biosensing Techniques/instrumentation , Disulfides/chemistry , Electrochemical Techniques/instrumentation , Graphite/chemistry , Hydrogen Peroxide/analysis , Molybdenum/chemistry , Nanocomposites/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Limit of Detection , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL