Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
Tree Physiol ; 44(8)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39041710

ABSTRACT

Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water-use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, and hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water-use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high vapor pressure deficit (VPD), but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. In contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.


Subject(s)
Forests , Trees , Water , Water/metabolism , Water/physiology , Trees/physiology , Brazil , Droughts , Plant Transpiration/physiology , Soil/chemistry , Plant Leaves/physiology
2.
Planta ; 258(1): 22, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37329469

ABSTRACT

MAIN CONCLUSION: Leaf water potential, gas exchange, and chlorophyll fluorescence exhibited significant differences among genotypes, high environmental effects, but low heritability. The highest-yielding and drought-tolerant genotypes presented superior harvest index and grain weight, compared to drought-susceptible ones. Physiological phenotyping can help identify useful traits related to crop performance under water-limited conditions. A set of fourteen bread wheat genotypes with contrasting grain yield (GY) was studied in eight Mediterranean environments in Chile, resulting from the combination of two sites (Cauquenes and Santa Rosa), two water conditions (rainfed-WL and irrigated-WW), and four growing seasons (2015-2018). The objectives were to (i) evaluate the phenotypic variation of leaf photosynthetic traits after heading (anthesis and grain filling) in different environments; (ii) analyze the relationship between GY and leaf photosynthetic traits and carbon isotope discrimination (Δ13C); and (iii) identify those traits that could have a greater impact in the determination of tolerant genotypes under field conditions. Agronomic traits exhibited significant genotypic differences and genotype × environment (GxE) interaction. The average GY under the WW condition at Santa Rosa was 9.2 Mg ha-1 (range 8.2-9.9 Mg ha-1) and under the WL condition at Cauquenes was 6.2 Mg ha-1 (range 3.7-8.3 Mg ha-1). The GY was closely related to the harvest index (HI) in 14 out of 16 environments, a trait exhibiting a relatively high heritability. In general terms, the leaf photosynthetic traits presented low GxE interaction, but high environmental effects and low heritability, except for the chlorophyll content. The relationships between GY and leaf photosynthetic traits were weaker when performed across genotypes in each environment, indicating low genotypic effects, and stronger when performed across environments for each genotype. The leaf area index and Δ13C also presented high environmental effects and low heritability, and their correlations with GY were influenced by environmental effects. The highest-yielding and drought-tolerant genotypes presented superior HI and grain weight, but no clear differences in leaf photosynthetic traits or Δ13C, compared to drought-susceptible ones. It seems that the phenotypic plasticity of agronomic and leaf photosynthetic traits is very important for crop adaptation to Mediterranean environments.


Subject(s)
Carbon , Triticum , Triticum/genetics , Genotype , Plant Leaves/genetics , Chlorophyll , Edible Grain/genetics , Water , Biological Variation, Population
3.
Front Plant Sci ; 13: 974050, 2022.
Article in English | MEDLINE | ID: mdl-36092408

ABSTRACT

The search for drought tolerant species or cultivars is important to address water scarcity caused by climate change in Mediterranean regions. The anisohydric-isohydric behavior concept has been widely used to describe stomatal regulation during drought, simply in terms of variation of minimal water potential (Ψmin) in relation to pre-dawn water potential (Ψpd). However, its simplicity has sometimes failed to deliver consistent results in describing a complex behavior that results from the coordination of several plant functional traits. While Prunus dulcis (almond) is known as a drought tolerant species, little information is available regarding consistent metrics to discriminate among cultivars or the mechanisms underlying drought tolerance in almond. Here we show a sequence of plant stomatal, hydraulic, and wilting responses to drought in almonds, and the main differences between anisohydric and isohydric cultivars. In a pot desiccation experiment we observed that stomatal closure in P. dulcis is not driven by loss in turgor or onset of xylem cavitation, but instead, occurs early in response to decreasing Ψmin that could be related to the protection of the integrity of the hydraulic system, independently of cultivar. Also, we report that anisohydric cultivars of P. dulcis are characterized by maximum stomatal conductance, lower water potentials for stomatal closure and turgor loss, and lower vulnerability to xylem cavitation, which are traits that correlated with metrics to discriminate anisohydric and isohydric behavior. Our results demonstrate that P. dulcis presents a strategy to avoid cavitation by closing stomata during the early stages of drought. Future research should also focus on below-ground hydraulic traits, which could trigger stomatal closure in almond.

4.
Front Plant Sci ; 12: 731314, 2021.
Article in English | MEDLINE | ID: mdl-34721459

ABSTRACT

This study addresses the interactive effects of deficit irrigation and huanglongbing (HLB) infection on the physiological, biochemical, and oxidative stress responses of sweet orange trees. We sought to answer: (i) What are the causes for the reduction in water uptake in HLB infected plants? (ii) Is the water status of plants negatively affected by HLB infection? (iii) What are the key physiological traits impaired in HLB-infected plants? and (iv) What conditions can mitigate both disease severity and physiological/biochemical impairments in HLB-infected plants? Two water management treatments were applied for 11 weeks to 1-year-old-trees that were either healthy (HLB-) or infected with HLB (+) and grown in 12-L pots. Half of the trees were fully irrigated (FI) to saturation, whereas half were deficit-irrigated (DI) using 40% of the water required to saturate the substrate. Our results demonstrated that: reduced water uptake capacity in HLB+ plants was associated with reduced root growth, leaf area, stomatal conductance, and transpiration. Leaf water potential was not negatively affected by HLB infection. HLB increased leaf respiration rates (ca. 41%) and starch synthesis, downregulated starch breakdown, blocked electron transport, improved oxidative stress, and reduced leaf photosynthesis (ca. 57%) and photorespiration (ca.57%). Deficit irrigation reduced both leaf respiration (ca. 45%) and accumulation of starch (ca.53%) by increasing maltose (ca. 20%), sucrose, glucose, and fructose contents in the leaves, decreasing bacterial population (ca. 9%) and triggering a series of protective measures against further impairments in the physiology and biochemistry of HLB-infected plants. Such results provide a more complete physiological and biochemical overview of HLB-infected plants and can guide future studies to screen genetic tolerance to HLB and improve management strategies under field orchard conditions.

5.
Plants (Basel) ; 10(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34834685

ABSTRACT

The objective of this study was to evaluate photosynthetic performance based on gas exchange traits, chlorophyll a fluorescence, and leaf water potential (ΨL) in nine Hevea brasiliensis genotypes from the ECC-1 (Élite Caquetá Colombia) selection and the cultivar IAN 873 (control) in response to different climatic (semi-humid warm and humid warm climates), seasonal (dry and rainy periods), and hourly (3:00 to 18:00) variations that can generate stress in the early growth stage (two-year-old plants) in two large-scale clonal trials in the Colombian Amazon. The photosynthetic performance in 60% of the Colombian genotypes was slightly affected under the conditions with less water availability (dry period, semi-humid warm site, and between 9:00 and 15:00 h), as compared with IAN 873, whose affectation was moderate in terms of photosynthesis rates, but its water conservation strategy was strongly affected. The ECC 90, ECC 83, and ECC 73 genotypes had the best photosynthetic performance under conditions of greater water limitation, and ECC 35, and ECC 64 had a higher water status based on the leaf water potential, with intermediate photosynthetic performance. This germplasm has a high potential for selection in rubber tree breeding programs in future scenarios of climate change in the Colombian Amazon.

6.
Ecol Evol ; 11(17): 11808-11825, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522343

ABSTRACT

In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought-avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.We examined (a) tolerance to water stress, measured by predawn and mid-day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species-level differences.

7.
Plants (Basel) ; 10(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205343

ABSTRACT

As a consequence of climate change, water scarcity has increased the use of the iso-/anisohydric concept with the aim of identifying anisohydric or drought-tolerant genotypes. Recently, Meinzer and colleagues developed a metric for discriminating between iso- and anisohydric behavior called the hydroscape, which describes a range in which stomata control leaf water potential (Ψ) with decreasing water availability, and it is linked to several water-regulation and drought-tolerance traits. Thus, our objective was to test the usefulness of the hydroscape in discriminating between iso- and anisohydric Prunus dulcis cultivars, a species that is widely cultivated in Mediterranean central Chile due to its ability to withstand water stress. Through a pot desiccation experiment, we determined that the hydroscape was able to discriminate between two contrasting Prunus cultivars; the more anisohydric cultivar had a hydroscape 4.5 times greater than that of the other cultivar, and the hydroscape correlated with other metrics of plant water-use strategies, such as the maximum range of daily Ψ variation and the Ψ at stomatal closure. Moreover, the photosynthesis rates were also differently affected between cultivars. The more isohydric cultivar, which had a smaller hydroscape, displayed a steeper photosynthesis reduction at progressively lower midday Ψ. This methodology could be further used to identify drought-tolerant anisohydric Prunus cultivars.

8.
Oecologia ; 193(2): 337-348, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32474806

ABSTRACT

Foliar water uptake (FWU) has been reported for different species across several ecosystems types. However, little attention has been given to arid ecosystems, where FWU during dew formation or small rain events could ameliorate water deficits. FWU and their effects on leaf water potential (ΨLeaf) were evaluated in grasses and shrubs exploring different soil water sources in a Patagonian steppe. Also, seasonal variability in FWU and the role of cell wall elasticity in determining the effects on ΨLeaf were assessed. Eleven small rain events (< 8 mm) and 45 days with dew formation were recorded during the study period. All species exhibited FWU after experimental wetting. There was a large variability in FWU across species, from 0.04 mmol m-2 s-1 in species with deep roots to 0.75 mmol m-2 s-1 in species with shallow roots. Species-specific mean FWU rates were positively correlated with mean transpiration rates. The increase in ΨLeaf after leaf wetting varied between 0.65 MPa and 1.67 MPa across species and seasons. The effects of FWU on ΨLeaf were inversely correlated with cell wall elasticity. FWU integrated over both seasons varied between 28 mol m-2 in species with deep roots to 361 mol m-2 in species with shallow roots. Taking into account the percentage of coverage of each species, accumulated FWU represented 1.6% of the total annual transpiration of grasses and shrubs in this ecosystem. Despite this low FWU integrated over time compared to transpiration, wetting leaves surfaces can help to avoid larger water deficit during the dry season.


Subject(s)
Ecosystem , Water , Plant Leaves , Plant Transpiration , Seasons , Soil
9.
Plant Physiol Biochem ; 137: 102-112, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30771564

ABSTRACT

Potassium (K) is the most required macronutrient by Eucalyptus, while sodium (Na) can partially substitute some physiological functions of K and have a positive response on plant growth in K-depleted tropical soils. However, the right percentage of K substitution by Na is not yet known for Eucalyptus seedlings, since a few experiments have only compared treatments receiving K or Na. This study evaluated five levels of Na supply (0, 0.45, 0.90, 1.35 and 1.80 mM) as substitution for K in Eucalyptus seedlings grown in nutrient solution. Plants growth, biomass, K-nutritional status, leaf gas exchange, leaf carbon isotopic composition (δ13C ‰), leaf water potential (Ψw), leaf area (LA), stomatal density (SD) and water use efficiency (WUE) were measured. The highest total biomass yield was achieved by the Na estimated rate of 0.25 mM, corresponding to a leaf K: Na ratio of 3.41, and having the lowest δ13C values. Conversely, the highest Na rate (1.8 mM) induced K deficiency symptoms, lower growth, reduced total dry matter yield, leaf gas exchange, LA, SD and a higher δ13C, which presented a trend to an inverse correlation with CO2 assimilation rate (A), WUE and shoot dry matter. Collectively, our results conclude that substitution of 25% of K by Na (0.45 mM of Na) provided significant gains in nutritional status and positive plant physiological responses by increasing WUE, stomatal diffusion, and by augmenting CO2 uptake efficiency. This nutritional management can therefore be an alternative option to optimize yields and resource use efficiencies in Eucalyptus cultivation.


Subject(s)
Eucalyptus/metabolism , Plant Leaves/chemistry , Potassium/metabolism , Seedlings/metabolism , Sodium/metabolism , Carbon Isotopes/analysis , Carbon Isotopes/metabolism , Eucalyptus/drug effects , Eucalyptus/growth & development , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Shoots/chemistry , Plant Shoots/drug effects , Plant Stomata/physiology , Potassium/pharmacology , Seedlings/drug effects , Sodium/pharmacology , Water/metabolism
10.
Tree Physiol ; 37(11): 1582-1591, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29036552

ABSTRACT

Drought frequency is predicted to increase in future environments. Leaf water potential (ΨLW) is commonly used to evaluate plant water status, but traditional measurements can be logistically difficult and require destructive sampling. We used reflectance spectroscopy to characterize variation in ΨLW of Quercus oleoides Schltdl. & Cham. under differential water availability and tested the ability to predict pre-dawn ΨLW (PDΨLW) using spectral data collected hours after pressure chamber measurements on dark-acclimated leaves. ΨLW was measured with a Scholander pressure chamber. Leaf reflectance was collected at one or both of two time points: immediately (ΨLW) and ~5 h after pressure chamber measurements (PDΨLW). Predictive models were constructed using partial least-squares regression. Model performance was evaluated using coefficient of determination (R2), root-mean-square error (RMSE), bias, and the percent RMSE of the data range (%RMSE). ΨLW and PDΨLW were well predicted using spectroscopic models and successfully estimated a wide variation in ΨLW (light- or dark-acclimated leaves) as well as PDΨLW (dark-acclimated leaves only). Mean ΨLWR2, RMSE and bias values were 0.65, 0.51 MPa and 0.09, respectively, with a %RMSE between 8% and 20%, while mean PDΨLWR2, RMSE and bias values were 0.60, 0.44 MPa and 0.01, respectively, with a %RMSE between 9% and 20%. Estimates of PDΨLW produced similar statistical outcomes when analyzing treatment effects on PDΨLW as those found using reference pressure chamber measurements. These findings highlight a promising approach to evaluate plant responses to environmental change by providing rapid measurements that can be used to estimate plant water status as well as demonstrating that spectroscopic measurements can be used as a surrogate for standard, reference measurements in a statistical framework.


Subject(s)
Botany/methods , Droughts , Plant Leaves/physiology , Quercus/physiology , Spectrum Analysis/methods , Geography , Honduras , Physiology/methods
11.
Int J Biometeorol ; 61(9): 1699-1701, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28386701

ABSTRACT

The objectives of the study were to determine the maximum tolerable period between leaf removal from a plant and the determination of leaf water potential (Ψ l ), and to evaluate different ways of packing leaves after their removal from a plant (LR). Two experiments (Exp) were conducted in a randomized complete block design with four replicates, using bean, maize, and soybean crops. The predawn leaf water potential (Ψ PD ) (Exp1) and the minimum leaf water potential (Ψ min ) (Exp1 and Exp2) were determined. The maximum tolerable period between LR varied among species, ranging from 80 to 90 min for bean and soybean, and from 40 to 60 min for maize. A box with low interior air temperature and capable of blocking the effect of solar radiation reduced variation in leaf water potential. These results indicate that the determination of the Ψ l in bean, soybean, and maize crops does not need to be carried out immediately after leaf removal.


Subject(s)
Fabaceae/metabolism , Plant Leaves/metabolism , Zea mays/metabolism , Plant Transpiration , Sunlight , Temperature , Water/metabolism
12.
Biol Lett ; 13(1)2017 01.
Article in English | MEDLINE | ID: mdl-28077687

ABSTRACT

Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (πtlp). πtlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions.


Subject(s)
Droughts , Osmotic Pressure , Plant Leaves/physiology , Trees/physiology , Water/physiology , Adaptation, Physiological , French Guiana , Seasons , Tropical Climate
13.
GM Crops Food ; 5(4): 259-79, 2014.
Article in English | MEDLINE | ID: mdl-25523172

ABSTRACT

With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.


Subject(s)
Edible Grain/physiology , Adaptation, Physiological , Brassinosteroids , Crops, Agricultural , Edible Grain/classification , Reactive Oxygen Species/metabolism
14.
Plant Physiol Biochem ; 73: 326-36, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24184453

ABSTRACT

The physiological responses of C4 species to simultaneous water deficit and low substrate temperature are poorly understood, as well as the recovery capacity. This study investigated whether the effect of these abiotic stressors is cultivar-dependent. The differential responses of drought-resistant (IACSP94-2094) and drought-sensitive (IACSP97-7065) sugarcane cultivars were characterized to assess the relationship between photosynthesis and antioxidant protection by APX and SOD isoforms under stress conditions. Our results show that drought alone or combined with low root temperature led to excessive energetic pressure at the PSII level. Heat dissipation was increased in both genotypes, but the high antioxidant capacity due to higher SOD and APX activities was genotype-dependent and it operated better in the drought-resistant genotype. High SOD and APX activities were associated with a rapid recovery of photosynthesis in IACSP94-2094 plants after drought and low substrate temperature alone or simultaneously.


Subject(s)
Ascorbate Peroxidases/genetics , Cold Temperature , Droughts , Photosynthesis/genetics , Saccharum/genetics , Superoxide Dismutase/genetics , Water , Adaptation, Physiological/genetics , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Genotype , Phenotype , Photosystem II Protein Complex/metabolism , Plant Transpiration , Saccharum/enzymology , Saccharum/metabolism , Stress, Physiological/genetics , Superoxide Dismutase/metabolism
15.
Plant Cell Environ ; 36(12): 2163-74, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23639077

ABSTRACT

Hydraulic architecture was studied in shrub species differing in rooting depth in a cold desert in Southern Argentina. All species exhibited strong hydraulic segmentation between leaves, stems and roots with leaves being the most vulnerable part of the hydraulic pathway. Two types of safety margins describing the degree of conservation of the hydraulic integrity were used: the difference between minimum stem or leaf water potential (Ψ) and the Ψ at which stem or leaf hydraulic function was reduced by 50% (Ψ - Ψ50), and the difference between leaf and stem Ψ50. Leaf Ψ50 - stem Ψ50 increased with decreasing rooting depth. Large diurnal decreases in root-specific hydraulic conductivity suggested high root vulnerability to embolism across all species. Although stem Ψ50 became more negative with decreasing species-specific Ψsoil and minimum stem Ψ, leaf Ψ50 was independent of Ψ and minimum leaf Ψ. Species with embolism-resistant stems also had higher maximum stem hydraulic conductivity. Safety margins for stems were >2.1 MPa, whereas those for leaves were negative or only slightly positive. Leaves acted as safety valves to protect the integrity of the upstream hydraulic pathway, whereas embolism in lateral roots may help to decouple portions of the plant from the impact of drier soil layers.


Subject(s)
Droughts , Plant Leaves/physiology , Plant Physiological Phenomena , Plant Roots/physiology , Plant Stems/physiology , Xylem/physiology , Argentina , Circadian Rhythm/physiology , Water
16.
Sci. agric ; 67(2)2010.
Article in English | LILACS-Express | VETINDEX | ID: biblio-1497054

ABSTRACT

Regulated deficit irrigation (RDI) involves inducing water stress during specific fruit growth phases by irrigating at less than full evapotranspiration. The objectives of this research were to study the effects of RDI perfomed at stage II of fruit growth and postharvest, on productivity of clingstone peaches, fruit quality as well as photosynthetic rate and midday leaf water potential. The research was conducted in a commercial clingstone peach (Prunus persica L. Batch cv. A-37) orchard in Greece. Trees were irrigated by means of microsprinklers and their frequency was determined using local meteorological station data and the FAO 56 Pennman-Monteith method. Photosynthetic rate was measured by a portable infrared gas analyzer. Midday leaf water potential was measured by the pressure chamber technique. During the years 2005 and 2006, the treatment RDII with irrigation applied at growth stage II of the peach tree did not affect productivity, fresh and dry mass of fruits. RDII reduced preharvest fruit drop in comparison to the control. RDII as well as the combined treatment RDII plus RDIP with irrigation applied at postharvest, at both years reduced shoot length of the vigorous shoots inside the canopy. RDII in comparison to the control increased the soluble solids content of the fruits and the ratio soluble solids/acidity. However it did not affect fruit acidity and fruit firmness. RDII as well as RDII plus RDIP in 2006 increased 'double' fruits and fruits with open cavity in comparison to the control and RDIP. Water savings were considerable and associated with the climatic conditions of each year.


A irrigação por défice regulado (RDI) envolve a indução de défice de água durante fases específicas do crescimento das frutas, irrigando a taxas menores que a evapotranspiração. Os objetivos desse estudo foram verificar os efeitos da RDI no estágio II do crescimento das frutas e no periodo pós-colheita, avaliando a produtividade de pêssegos, a qualidade dos frutos, bem como a taxa fotossintética e o potencial da água na folha. A pesquisa foi desenvolvida em um pomar comercial de pêssegos com caroço aderente (Prunus persica L. Batch cv. A-37) da Grécia. As árvores foram irrigadas por meio de microaspersores e sua frequência foi determinada por meio de dados meteorológicos obtidos em estação automática e o método FAO 56 Pennman-Monteith para determinação de evepotranspiração. A taxa de fotossíntese foi medida por analisador de gás na faixa do infravermelho. O potencial da água na folha foi medido ao meio-dia usando a técnica da câmara de pressão. Durante 2005 e 2006 o tratamento RDII com irrigação aplicada no estágio II não apresentou efeito sobre a produção, pesos seco e fresco dos frutos. RDII reduziu a queda de frutos antes da colheita, em relação ao controle. RDII, como também o tratamento combinado de RDII mais RDIP com irrigação aplicada em pós-colheita, reduziu o comprimento de ramos vigorosos dentro do dossel nos dois anos de estudo. Em comparação com o controle, RDII aumentou o conteúdo de sólidos solúveis dos frutos e a relação sólidos solúveis/acidez, mas não afetou a acidez dos frutos e a firmeza da polpa. Em 2006 RDII e RDII mais RDIP aumentaram os `frutos dobrados' e frutos com cavidade aberta, em comparação com o controle. A economia de água foi considerável e associada às condições climáticas de cada ano.

17.
Sci. agric. ; 67(2)2010.
Article in English | VETINDEX | ID: vti-440457

ABSTRACT

Regulated deficit irrigation (RDI) involves inducing water stress during specific fruit growth phases by irrigating at less than full evapotranspiration. The objectives of this research were to study the effects of RDI perfomed at stage II of fruit growth and postharvest, on productivity of clingstone peaches, fruit quality as well as photosynthetic rate and midday leaf water potential. The research was conducted in a commercial clingstone peach (Prunus persica L. Batch cv. A-37) orchard in Greece. Trees were irrigated by means of microsprinklers and their frequency was determined using local meteorological station data and the FAO 56 Pennman-Monteith method. Photosynthetic rate was measured by a portable infrared gas analyzer. Midday leaf water potential was measured by the pressure chamber technique. During the years 2005 and 2006, the treatment RDII with irrigation applied at growth stage II of the peach tree did not affect productivity, fresh and dry mass of fruits. RDII reduced preharvest fruit drop in comparison to the control. RDII as well as the combined treatment RDII plus RDIP with irrigation applied at postharvest, at both years reduced shoot length of the vigorous shoots inside the canopy. RDII in comparison to the control increased the soluble solids content of the fruits and the ratio soluble solids/acidity. However it did not affect fruit acidity and fruit firmness. RDII as well as RDII plus RDIP in 2006 increased 'double' fruits and fruits with open cavity in comparison to the control and RDIP. Water savings were considerable and associated with the climatic conditions of each year.


A irrigação por défice regulado (RDI) envolve a indução de défice de água durante fases específicas do crescimento das frutas, irrigando a taxas menores que a evapotranspiração. Os objetivos desse estudo foram verificar os efeitos da RDI no estágio II do crescimento das frutas e no periodo pós-colheita, avaliando a produtividade de pêssegos, a qualidade dos frutos, bem como a taxa fotossintética e o potencial da água na folha. A pesquisa foi desenvolvida em um pomar comercial de pêssegos com caroço aderente (Prunus persica L. Batch cv. A-37) da Grécia. As árvores foram irrigadas por meio de microaspersores e sua frequência foi determinada por meio de dados meteorológicos obtidos em estação automática e o método FAO 56 Pennman-Monteith para determinação de evepotranspiração. A taxa de fotossíntese foi medida por analisador de gás na faixa do infravermelho. O potencial da água na folha foi medido ao meio-dia usando a técnica da câmara de pressão. Durante 2005 e 2006 o tratamento RDII com irrigação aplicada no estágio II não apresentou efeito sobre a produção, pesos seco e fresco dos frutos. RDII reduziu a queda de frutos antes da colheita, em relação ao controle. RDII, como também o tratamento combinado de RDII mais RDIP com irrigação aplicada em pós-colheita, reduziu o comprimento de ramos vigorosos dentro do dossel nos dois anos de estudo. Em comparação com o controle, RDII aumentou o conteúdo de sólidos solúveis dos frutos e a relação sólidos solúveis/acidez, mas não afetou a acidez dos frutos e a firmeza da polpa. Em 2006 RDII e RDII mais RDIP aumentaram os `frutos dobrados' e frutos com cavidade aberta, em comparação com o controle. A economia de água foi considerável e associada às condições climáticas de cada ano.

18.
Acta amaz ; Acta amaz;37(2): 229-234, jun. 2007. graf
Article in Portuguese | LILACS | ID: lil-462051

ABSTRACT

O potencial hídrico da folha é um dos fatores mais importantes que afetam o funcionamento dos estômatos. O objetivo deste trabalho foi avaliar o efeito da variação diurna na irradiância e déficit de pressão de vapor (DPV) na fotossíntese (A), condutância estomática (g s) e potencial hídrico da folha (psi) em Carapa guianensis (Aubl.). Os dados foram coletados de 07:00 às 17:00 h. A taxa fotossintética atingiu um valor máximo (2,5 æmol m-2 s-1) às 10:00 h, depois declinou até atingir um mínimo de 1 æmolm-2 s-1 às 16:00 h. A condutância estomática oscilou durante o dia, de 0,04 molm-2s-1 (ao meio dia) para 0,02 molm-2s- 1 no final da tarde. O potencial hídrico da folha foi máximo nas primeiras horas do dia (-0,3 MPa) e mínimo (-0,75 MPa) no meio da tarde (14:30 a 15:00 h). Após ter alcançado um mínimo, o psi aumentou até -0,64 MPa no fim da tarde. A taxa fotossintética aumentou linearmente em função do g s (P < 0,01). Também houve uma relação positiva entre psi e g s (P < 0,01). A taxa fotossintética declinou durante o dia após ter alcançado um pico no início da manhã, demonstrando que os fatores ambientais que afetam o psi têm efeito significativo na assimilação do carbono de C. guianensis.


Leaf water potential is one of the most important factors affecting stomatal functioning. The aim of this study was to assess the effect of variation in diurnal irradiance and vapour pressure deficit on photosynthesis (A), stomatal conductance (g s) and leaf water potential (psi) in Carapa guianensis (Aubl.). Data were collected from 07:00 to 17:00 h. Photosynthetic rates reached a maximum (2.5 æmol m-2 s-1) at 10:00 h, thereafter declined to a minimum of 1 æmol m-2 s-1 at 16:00 h. Stomatal conductance oscillated during the day, from 0.04 mol m-2 s-1 (at midday) to 0.02.mol.m-2.s-1 at the end of the afternoon. Leaf water potential was higher early in the morning (-0.3 MPa) and lower (-0.75 MPa) at mid-afternoon (14:30 -15:00 h). After reaching a minimum, psi increased up to -0.64 MPa at sunset. Photosynthetic rates increased linearly as a function of g s (P < 0.01). Also there was a positive relationship between psi and g s (P< 0.01). Photosynthetic rates declined during the day after reaching a peak early in the morning, which makes clear that environmental factors that influence psi greatly affect carbon assimilation of C. guianensis.


Subject(s)
Plant Transpiration , Meliaceae , Vapor Pressure
19.
Acta amaz. ; 37(2)2007.
Article in Portuguese | VETINDEX | ID: vti-450260

ABSTRACT

Leaf water potential is one of the most important factors affecting stomatal functioning. The aim of this study was to assess the effect of variation in diurnal irradiance and vapour pressure deficit on photosynthesis (A), stomatal conductance (g s) and leaf water potential (psi) in Carapa guianensis (Aubl.). Data were collected from 07:00 to 17:00 h. Photosynthetic rates reached a maximum (2.5 µmol m-2 s-1) at 10:00 h, thereafter declined to a minimum of 1 µmol m-2 s-1 at 16:00 h. Stomatal conductance oscillated during the day, from 0.04 mol m-2 s-1 (at midday) to 0.02.mol.m-2.s-1 at the end of the afternoon. Leaf water potential was higher early in the morning (-0.3 MPa) and lower (-0.75 MPa) at mid-afternoon (14:30 -15:00 h). After reaching a minimum, psi increased up to -0.64 MPa at sunset. Photosynthetic rates increased linearly as a function of g s (P 0.01). Also there was a positive relationship between psi and g s (P 0.01). Photosynthetic rates declined during the day after reaching a peak early in the morning, which makes clear that environmental factors that influence psi greatly affect carbon assimilation of C. guianensis.


O potencial hídrico da folha é um dos fatores mais importantes que afetam o funcionamento dos estômatos. O objetivo deste trabalho foi avaliar o efeito da variação diurna na irradiância e déficit de pressão de vapor (DPV) na fotossíntese (A), condutância estomática (g s) e potencial hídrico da folha (psi) em Carapa guianensis (Aubl.). Os dados foram coletados de 07:00 às 17:00 h. A taxa fotossintética atingiu um valor máximo (2,5 µmol m-2 s-1) às 10:00 h, depois declinou até atingir um mínimo de 1 µmolm-2 s-1 às 16:00 h. A condutância estomática oscilou durante o dia, de 0,04 molm-2s-1 (ao meio dia) para 0,02 molm-2s- 1 no final da tarde. O potencial hídrico da folha foi máximo nas primeiras horas do dia (-0,3 MPa) e mínimo (-0,75 MPa) no meio da tarde (14:30 a 15:00 h). Após ter alcançado um mínimo, o psi aumentou até -0,64 MPa no fim da tarde. A taxa fotossintética aumentou linearmente em função do g s (P 0,01). Também houve uma relação positiva entre psi e g s (P 0,01). A taxa fotossintética declinou durante o dia após ter alcançado um pico no início da manhã, demonstrando que os fatores ambientais que afetam o psi têm efeito significativo na assimilação do carbono de C. guianensis.

20.
Article in Portuguese | LILACS-Express | VETINDEX | ID: biblio-1477026

ABSTRACT

The occurrence of water deficit during the maize crop cycle may affect the physiological processes of plants. The objective of this research was to evaluate alterations in the leaf conductance of maize plants, submitted to different soil tillage systems and water availability in the soil. A field experiment was carried out in the Estação Experimental Agronômica of the Universidade Federal do Rio Grande do Sul, in the summer season of 2002/03. The maize was cropped in no-tillage (NT) and conventional tillage (CT) systems, with full irrigation (I2) necessary to maintain the soil moisture close to the field capacity, partial irrigation (I1) corresponding to 41% of the water application in I2, and non-irrigation (I0). The measurements were taken at 10h and 13h (local time), in order to characterize the maximum and minimum leaf conductance, respectively. During the vegetative plant growing, the lowest values of either maximum and minimum leaf conductance occurred in the no-tillage system. However, since the maximum leaf area index was achieved (at tasseling stage), the maize plants cropped in no-tilt soil presented the highest leaf conductance, indicating a higher soil water availability in NT than in CT.


A ocorrência de déficit hídrico durante o desenvolvimento da cultura do milho pode causar alterações nos processos fisiológicos da cultura. O objetivo deste trabalho foi avaliar alterações na condutância foliar da cultura do milho, cultivado em dois sistemas de manejo do solo, com diferentes disponibilidades hídricas. O milho foi cultivado em plantio direto (PD) e convencional (PC) com irrigação (I2) de forma a manter a umidade do solo próxima à capacidade de campo, irrigação parcial (I1) correspondente a 41% da água aplicada em I2, e sem irrigação (I0). As medições de condutância foliar foram realizadas às 10 e 13 horas (hora local), sendo denominadas de condutância foliar máxima e mínima, respectivamente. Durante o crescimento vegetativo, os menores valores de condutância máxima e mínima ocorreram em plantio direto. Contudo, quando o índice de área foliar máximo foi alcançado, a partir do pendoamento, as plantas de milho em plantio direto apresentaram maior condutância, indicando maior disponibilidade de água no solo, neste sistema.

SELECTION OF CITATIONS
SEARCH DETAIL