Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Med Vet Entomol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011830

ABSTRACT

Leishmania spp. are zoonotic parasites transmitted by phlebotomine sand flies, including those of the Lutzomyia genus, which can cause leishmaniases in both humans and dogs. Lutzomyia spp. are established in many countries in South and Central America and some areas of the southern United States, with suspected potential of these vectors to undergo further range expansion due to climate change. A scoping review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extensions for Scoping Reviews (PRISMA-ScR) guidelines to describe the current state of knowledge on the key ecological factors associated with Lutzomyia spp. survival, reproduction and establishment. The following electronic databases were searched for eligible studies published from 1 January 1990, to the date of search, 26 April 2023: CAB Direct (CABI), MEDLINE (via Ovid), Biological Sciences Database and Environmental Sciences Database. Primary research articles that were available in English and focused on ecological factors associated with Lutzomyia spp., such as climatic and habitat factors, geographic range, seasonality and temporality, and host abundance, were eligible for inclusion in the study. Following de-duplication, a total of 167 studies were included in Level 1 screening, 64 studies were included in Level 2 screening and 31 studies met the criteria for data extraction. Study locations included Argentina, Brazil, Colombia, Peru, Venezuela, the United States, Mexico and Canada, with some studies including multiple regions. A total of 31 different Lutzomyia spp. were assessed across these studies, with most (51.6%) of the studies focused on Lutzomyia longipalpis. Eligible studies investigated factors such as seasonality (n = 5), temperature (n = 19), precipitation (n = 13), humidity (n = 2), vegetation presence or requirements (n = 13), ecotypes (n = 7), and/or community type (i.e., urban, suburban, rural) (n = 5). Lutzomyia spp. activity was found to be higher during the rainy season, and peak when temperatures were between 20 and 25°C. Lutzomyia spp. were also found to preferentially reside in tropical or subtropical forests, which are characterised by their lack of a distinct dry season and high precipitation. This scoping review summarised the current state of the literature on the ecological factors associated with the survival, activity and reproduction of Lutzomyia spp. While there appears to be some consensus in the literature regarding some ecological requirements (such as seasonality, temperature and habitat features), overall, there is a lack of published research in this topic. This poses a significant challenge for future studies, which aim to predict the future distribution of Lutzomyia spp. in the context of climate and land use changes. Additional ecological research is urgently needed on Lutzomyia spp. given their relevance to both human and animal health.

2.
Mol Biochem Parasitol ; 259: 111629, 2024 09.
Article in English | MEDLINE | ID: mdl-38750697

ABSTRACT

Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.


Subject(s)
Antiprotozoal Agents , Bignoniaceae , Flavonoids , Leishmania , Molecular Docking Simulation , Plant Extracts , Bignoniaceae/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/isolation & purification , Flavonoids/pharmacology , Flavonoids/chemistry , Animals , Leishmania/drug effects , Leishmania/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Mice , Inhibitory Concentration 50 , Macrophages/drug effects , Macrophages/parasitology , RAW 264.7 Cells
3.
Pathogens ; 12(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38003756

ABSTRACT

Early and accurate detection of infectious diseases is a key step for surveillance, epidemiology and control, notably timely disease diagnosis, patient management and follow-up. In this study, we aimed to develop handheld ultra-fast duplex PCR assays coupled to amplicon detection by lateral flow (LF) immunoassay to deliver a rapid and simple molecular diagnostic test for concomitant detection and identification of the main Leishmania parasites encountered in Tunisia. We selected two DNA targets to amplify L. major/L. tropica and L. infantum/L. tropica groups of species DNAs, respectively. We optimized the experimental conditions of a duplex ultra-fast PCR. The amplification is performed using a portable Palm convection PCR machine within 18 min, and the products are detected using an LF cassette within 10 min. The test allows the identification of the infecting species according to the position and number of test lines revealed. Tested on a selection of DNAs of representative Leishmania strains of the three studied species (N = 37), the ultra-fast duplex PCR-LF showed consistent, stable and reproducible results. The analytical limit of detection of the test was 0.4 pg for L. major, 4 pg for L. infantum and 40 pg for L. tropica.

4.
Transbound Emerg Dis ; 69(5): e1326-e1337, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35839512

ABSTRACT

Leishmaniasis (or the leishmaniases), classified as a neglected tropical parasitic disease, is found in parts of the tropics, subtropics and southern Europe. Leishmania parasites are transmitted by the bite of phlebotomine sand flies and million cases of human infection occur annually. Leishmania tarentolae has been historically considered a non-pathogenic protozoan of reptiles, which has been studied mainly for its potential biotechnological applications. However, some strains of L. tarentolae appear to be transiently infective to mammals. In areas where leishmaniasis is endemic, recent molecular diagnostics and serological positivity to L. tarentolae in humans and dogs have spurred interest in the interactions between these mammalian hosts, reptiles and Leishmania infantum, the main aetiologic agent of human and canine leishmaniasis. In this review, we discuss the systematics and biology of L. tarentolae in the insect vectors and the vertebrate hosts and address questions about evolution of reptilian leishmaniae. Furthermore, we discuss the possible usefulness of L. tarentolae for new vaccination strategies.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis , Psychodidae , Animals , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dog Diseases/prevention & control , Dogs , Europe , Humans , Insect Vectors/parasitology , Leishmaniasis/epidemiology , Leishmaniasis/prevention & control , Leishmaniasis/veterinary , Mammals , Psychodidae/parasitology
5.
Parasitol Res ; 121(1): 21-34, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34761278

ABSTRACT

The leishmaniases are a group of diseases caused by the protozoan parasite belonging to the genus Leishmania. In the New World, although dogs are considered the main parasite reservoir, in the last two decades, several studies have confirmed the role of cats (Felis catus) in the epidemiology of the disease and feline leishmaniasis (FeL) is now considered to be an emerging disease. The present review summarizes the current knowledge about FeL, focusing on important immunopathological aspects, epidemiology, and diagnostic methods applied for felines in Brazil. Cats are infected with the same species of Leishmania found in dogs (i.e., Leishmania infantum). Like dogs, skin lesions are the most common in cats with clinical FeL, mainly affecting the cephalic region and less frequently the legs which may be accompanied by generalized signs or visceral involvement. Information on the immune response of cats to Leishmania infection is scarce; however, efficient infection control is seen in most cases. For diagnosis, generally, the same methods as those in dogs are used, mainly serological tools. But there is a lack of studies focusing the performance of these methods for diagnosing FeL. The estimated overall prevalence of FeL in Brazil is 8%, with L. infantum being the most prevalent species. However, infections with Leishmania braziliensis and Leishmania amazonensis have also been reported. In conclusion, although there has been an increase in the publication related to FeL in Brazil in recent years, there is a lack of research relating immune response and diagnosis of these animals. Cats have been shown to be competent hosts for Leishmania parasites, and their role in the epidemiology of the disease cannot be underestimated, especially in areas of Brazil where the disease is historically endemic.


Subject(s)
Cat Diseases , Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Animals , Brazil , Cats , Dogs
6.
Cells ; 10(11)2021 11 16.
Article in English | MEDLINE | ID: mdl-34831418

ABSTRACT

Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA-protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite's cell cycle.


Subject(s)
Cell Cycle , Leishmania/cytology , Leishmania/enzymology , Telomerase/metabolism , Telomere/metabolism , Humans , Models, Biological , Phylogeny
7.
Emerg Infect Dis ; 27(9): 2462-2465, 2021.
Article in English | MEDLINE | ID: mdl-34424171

ABSTRACT

Disseminated cutaneous leishmaniasis (DCL) is an uncommon form of Leishmania braziliensis infection. It remains unknown why some people develop this clinical condition. We describe 14 DCL patients in Northeast Brazil during 2015-2018. These patients regularly drank large amounts of alcohol, possibly increasing their risk for DCL.


Subject(s)
Alcoholism , Leishmania braziliensis , Leishmaniasis, Cutaneous , Brazil/epidemiology , Ethanol , Humans , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/epidemiology
8.
Molecules ; 26(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361781

ABSTRACT

The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".


Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/drug therapy , Drug Design , Leishmaniasis/drug therapy , Molecular Targeted Therapy/methods , Trypanosomiasis, African/drug therapy , Animals , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/classification , Chagas Disease/parasitology , Chagas Disease/transmission , Drug Discovery , Humans , Insect Vectors/drug effects , Insect Vectors/parasitology , Leishmania/drug effects , Leishmania/genetics , Leishmania/growth & development , Leishmania/metabolism , Leishmaniasis/parasitology , Leishmaniasis/transmission , Life Cycle Stages/drug effects , Life Cycle Stages/genetics , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Structure , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Structure-Activity Relationship , Trypanosoma brucei gambiense/drug effects , Trypanosoma brucei gambiense/genetics , Trypanosoma brucei gambiense/growth & development , Trypanosoma brucei gambiense/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/metabolism , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/transmission
9.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200517

ABSTRACT

Epoxy-α-lapachone (Lap) and Epoxymethyl-lawsone (Law) are oxiranes derived from Lapachol and have been shown to be promising drugs for Leishmaniases treatment. Although, it is known the action spectrum of both compounds affect the Leishmania spp. multiplication, there are gaps in the molecular binding details of target enzymes related to the parasite's physiology. Molecular docking assays simulations were performed using DockThor server to predict the preferred orientation of both compounds to form stable complexes with key enzymes of metabolic pathway, electron transport chain, and lipids metabolism of Leishmania spp. This study showed the hit rates of both compounds interacting with lanosterol C-14 demethylase (-8.4 kcal/mol to -7.4 kcal/mol), cytochrome c (-10.2 kcal/mol to -8.8 kcal/mol), and glyceraldehyde-3-phosphate dehydrogenase (-8.5 kcal/mol to -7.5 kcal/mol) according to Leishmania spp. and assessed compounds. The set of molecular evidence reinforces the potential of both compounds as multi-target drugs for interrupt the network interactions between parasite enzymes, which can lead to a better efficacy of drugs for the treatment of leishmaniases.


Subject(s)
Leishmania/drug effects , Naphthoquinones/pharmacology , Computer Simulation , Cytochromes c/metabolism , Electron Transport Chain Complex Proteins/metabolism , Epoxy Compounds/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Leishmaniasis/drug therapy , Leishmaniasis/metabolism , Lipid Metabolism/drug effects , Metabolic Networks and Pathways/drug effects , Molecular Docking Simulation
10.
Parasitol Res ; 120(8): 2731-2747, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34245362

ABSTRACT

Current treatment guidelines for leishmaniasis is based on chemotherapy with drugs that show a set of limitations such as high cost, toxicity, difficult route of administration, and lack of efficacy in endemic areas. In this context, phytopharmaceutical products and herbal medicines emerge as promising alternatives for developing new treatment against leishmaniasis. This review discusses the perspectives of leishmaniasis treatment based on natural products and phytotherapy highlighting the Piper genus, especially P. aduncun and P. mollicomum Kunth covering the period of 1998 to 2020. Leishmanicidal activity of pure compounds of Piper spp. [3-(3,4,5-trimethoxyphenyl) propanoic acid, 3-chlorosintenpyridone, 2'-hydroxy-3',4',6'-trimethoxy-chalcone, cardamonin, conocarpan, cubebin, eupomatenoid, flavokavain B, ( +)-(7R,8S)-epoxy-5,6-didehydrokavain, N-[7-(3',4'-methylenedioxypheny l-2(E),4(E)-heptadienoyl-pyrrolidine, N-[7-(3',4'-methylenedioxyphenyl)-2(Z),4(Z)-heptadienoyl-pyrrolidine, piperovatine, pellitorine, and piplartine (piperlongumine)] were proved against the promastigote and amastigote forms of parasite related with cutaneous (L. (L.) amazonensis, L. (V.) braziliensis, and L. (V.) guyanensis) and visceral (L. (L.) donovani, L. (L.) chagasi, and L. (L.) infantum). We also discussed the perspective of leishmaniasis treatment, considering the potential synergism between different promising species of Piper, presenting some interesting interaction possibilities for future studies between plants. Finally, the necessary steps for technological development of phytomedicines and herbal medicines with the desirable quality requirements for medicines are highlighted. The data presented here highlight the use of Piper spp. as source of pharmacological compounds that can lead to effective, safe, and inexpensive treatments for leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania/drug effects , Phytochemicals , Piper , Antiprotozoal Agents/pharmacology , Leishmaniasis/drug therapy , Phytochemicals/pharmacology , Phytotherapy , Piper/chemistry
11.
Parasite Immunol ; 43(10-11): e12874, 2021 10.
Article in English | MEDLINE | ID: mdl-34309860

ABSTRACT

The differences in morbidity and mortality patterns and life expectancy between the sexes are well established in different infectious and parasitic conditions, such as in leishmaniases, in which biological, genetic, sexual and hormonal variations can modulate the immune response indicating greater infectivity, prevalence and clinical severity in men. In this regard, in seeking the understanding of factors related to protection and susceptibility to infection, this review aimed to discuss the influence of sex hormones on the immune response to leishmaniases. In the literature, sex hormone variations promote differences in the innate, humoral and cell-mediated immune response, leading to greater susceptibility, mortality and complications in males. Epidemiological estimates confirm these results, showing a predominance of the disease, in its different clinical forms, in men and suggesting that sexual variations influence immunomodulatory mechanisms since the prevalence of cases comprises the post-puberty and adulthood period. In this perspective, the action of sex hormones has been investigated in different clinical models, highlighting the potential of testosterone in immunosuppression, given its association with greater susceptibility and poor control of parasite load and the induction of cell apoptosis and attenuation of pro-inflammatory signalling pathways. Therefore, hormonal variations influence the immune response among males and females against leishmaniases, in which androgens may present immunosuppressive potential, while steroids present immunomodulatory characteristics.


Subject(s)
Leishmaniasis , Sex Characteristics , Adult , Female , Gonadal Steroid Hormones , Humans , Immunity , Male , Testosterone
12.
Emerg Infect Dis ; 27(6)2021 06.
Article in English | MEDLINE | ID: mdl-34013857

ABSTRACT

A questionnaire survey of animal and human health authorities in Europe revealed that leishmaniases are not notifiable in all countries with autochthonous cases. Few countries implement surveillance and control targeting both animal and human infections. Leishmaniases are considered emergent diseases in most countries, and lack of resources is a challenge for control.


Subject(s)
Leishmaniasis , Animals , Europe , European Union , Humans
13.
J Med Entomol ; 58(6): 2488-2494, 2021 11 09.
Article in English | MEDLINE | ID: mdl-33884431

ABSTRACT

The transmission of pathogens that cause leishmaniases occurs by the bite of female sand flies (Diptera: Psychodidae) in their vertebrate hosts, which makes the identification of their bloodmeal sources an important step for the control and epidemiology of these diseases. In Brazil, the state of Roraima has a great diversity of sand flies, vertebrate hosts, and protozoan Leishmania, but little is known about the host blood-feeding preferences of sand flies. Thus, we evaluated the bloodmeal sources of sand flies collected from their sylvatic habitats in Parque Nacional do Viruá, Roraima. Fieldwork was carried-out between 13th and 18th August 2019 using CDC light traps. Sand flies were slide-mounted and morphologically identified using the head and last segments of the abdomen. Engorged females had their DNA extracted, followed by amplification and sequencing of the cytochrome b (cytb) molecular marker for vertebrates. Sequences were analyzed and compared with those from GenBank using the BLASTn search tool, in addition to the reconstruction of a phylogenetic tree to demonstrate the clustering pattern of these sequences. A total of 1,209 sand flies were identified, comprising 20 species, in which the most abundant were Psychodopygus ayrozai (Barretto and Coutinho) (42.10%) and Psychodopygus chagasi (Costa Lima) (26.22%). Bloodmeal source identification was successfully performed for 34 sand flies, that confirm four vertebrate species, being the most abundant the armadillo Dasypus novemcinctus Linnaeus, 1758 (Cingulata: Dasypodidae).


Subject(s)
Food Chain , Insect Vectors/physiology , Psychodidae/physiology , Animals , Brazil , Feeding Behavior , Leishmaniasis/transmission , Polymerase Chain Reaction , Vertebrates
14.
Acta biol. colomb ; 26(1): 135-138, ene.-abr. 2021. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1152677

ABSTRACT

ABSTRACT The aim of this study was the identification of Leishmania species that causes cutaneous leishmaniasis in a patient from Buenaventura, Valle del Cauca, on the Pacific coast of Colombia. Clinical samples were obtained from a 29 years-old male who presented a distinct ulcer with raised borders on his neck. Samples were taken for direct microscopic examination, parasite culture, and molecular identification of the infecting Leishmania species by sequencing of the cytochrome b gene. Direct examination was positive for amastigotes of Leishmania but the culture was negative. The infecting parasite species was identified as L. (V.) guyanensis by means of the nucleotide sequence of a 509 bp fragment of the cytochrome b gene. We report the presence of L. (V.) guyanensis in rural areas of Buenaventura in Valle del Cauca, and the expansion of the geographical distribution of this species in the Pacific region of Colombia.


RESUMEN El objetivo de este estudio fue identificar la especie de Leishmania causante de la leishmaniasis cutánea en un paciente de Buenaventura, Valle del Cauca, en la costa Pacífica de Colombia. Se obtuvieron muestras clínicas de un varón de 29 años de edad que presentó una úlcera distintiva con bordes levantados en el cuello. Se tomaron muestras para examen microscópico directo, cultivo de parásitos e identificación molecular de la especie infectante de Leishmania mediante secuenciación del gen del citocromo b. El examen directo fue positivo para amastigotes de Leishmania pero el cultivo fue negativo. La especie parasitaria infectante se identificó como L. (V.) guyanensis por medio de la secuencia de nucleótidos de un fragmento de 509 pb del gen citocromo b. Con este reporte notificamos la presencia de L. (V.) guyanensis en zona rural del municipio de Buenaventura en el Valle del Cauca y la expansión de la distribución geográfica de esta especie en la región Pacífica de Colombia.

15.
Microorganisms ; 8(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008038

ABSTRACT

In Morocco, cutaneous and visceral leishmaniases represent a public health concern. In this opinion paper, we propose to highlight chosen elements that have governed the drastic increase in the incidence of leishmaniases recorded in Morocco during the period between 1990 to 2010 in order to guide the prediction of the expansion of diseases and epidemic events. We highlight that the dispersion of the zoonotic cutaneous leishmaniasis (ZCL) form, caused by the Leishmania major parasite, appears to be closely related to that of its arthropod vector density, which is sensitive to changes in climate. The dissemination of anthroponotic cutaneous leishmaniasis (ACL) was related to an increase in human travel and local tourism during the studied decades. These are linked to economic expansion and infrastructure development. Interestingly, the main ACL foci are spatially aligned with the highways, and their occurrence was synchronized with the building of transportation infrastructure. During the above-mentioned decades, the zoonotic visceral leishmaniasis (ZVL) caused by Leishmania infantum has expanded from its historical northern territories, dispersing outwards in all directions. This spread follows the emergence of hamlets and villages connecting with major cities.

16.
Int J Mol Sci ; 21(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121441

ABSTRACT

Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.


Subject(s)
Leishmania/isolation & purification , Trypanosoma/isolation & purification , Trypanosomatina/isolation & purification , Animals , Chagas Disease/diagnosis , Chagas Disease/parasitology , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dogs , Humans , Leishmania/pathogenicity , Leishmaniasis/diagnosis , Leishmaniasis/parasitology , Trypanosoma/pathogenicity , Trypanosomatina/pathogenicity , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary
17.
Int J Parasitol Parasites Wildl ; 8: 118-126, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30740304

ABSTRACT

Cutaneous leishmaniasis caused by Leishmania major is a typical zoonosis circulating in rodents. In Sub-Saharan Africa the reservoirs remain to be identified, although L. major has been detected in several rodent species including members of the genera Arvicanthis and Mastomys. However, differentiation of true reservoir hosts from incidental hosts requires in-depth studies both in the field and in the laboratory, with the best method for testing the infectiousness of hosts to biting vectors being xenodiagnosis. Here we studied experimental infections of three L. major strains in Arvicanthis neumanni, A. niloticus and Mastomys natalensis; the infections were initiated either with sand fly-derived or with culture-derived Leishmania promastigotes. Inoculated rodents were monitored for several months and tested by xenodiagnoses for their infectiousness to Phlebotomus duboscqi, the natural vector of L. major in Sub-Saharan Africa. The distribution and load of parasites were determined post mortem using qPCR from the blood, skin and viscera samples. The attractiveness of Arvicanthis and Mastomys to P. duboscqi was tested by pair-wise comparisons. Three L. major strains used significantly differed in infectivity: the Middle Eastern strain infected a low proportion of rodents, while two Sub-Saharan isolates (LV109, LV110) infected a high percentage of animals and LV110 also produced higher parasite loads in all host species. All three rodent species maintained parasites of the LV109 strain for 20-25 weeks and were able to infect P. duboscqi without apparent health complications: infected animals showed only temporary swellings or changes of pigmentation at the site of inoculation. However, the higher infection rates, more generalized distribution of parasites and longer infectiousness period to sand flies in M. natalensis suggest that this species plays the more important reservoir role in the life cycle of L. major in Sub-Saharan Africa. Arvicanthis species may serve as potential reservoirs in seasons/periods of low abundance of Mastomys.

18.
Article in English | MEDLINE | ID: mdl-30037049

ABSTRACT

The proliferation of vector-borne diseases are predicted to increase in a changing climate and Leishmaniases, as a vector-borne diseases, are re-emerging diseases in several regions of the world. In Morocco, during the last decade, a sharp increase in cutaneous leishmaniases cases has been reported. Nevertheless, in Morocco, leishmaniases are a major public health problem, and little interest was given to climate change impacts on the distribution and spread of these diseases. As insect-borne diseases, the incidence and distribution of leishmaniases are influenced by environmental changes, but also by several socio-economic and cultural factors. From a biological point of view, environmental variables have effects on the survival of insect vectors and mammalian reservoirs, which, in turn, affects transmission. Here, we highlight the effects of climate change in Morocco and discuss its consequences on the epidemiology of leishmaniases to identify challenges and define targeted recommendations to fight this disease.


Subject(s)
Climate Change , Leishmaniasis, Cutaneous/epidemiology , Animals , Disease Vectors , Humans , Incidence , Insect Vectors , Leishmaniasis, Cutaneous/prevention & control , Morocco/epidemiology , Public Health
19.
Front Immunol ; 9: 1043, 2018.
Article in English | MEDLINE | ID: mdl-29868006

ABSTRACT

Due to an increase in the incidence of leishmaniases worldwide, the development of new strategies such as prophylactic vaccines to prevent infection and decrease the disease have become a high priority. Classic vaccines against leishmaniases were based on live or attenuated parasites or their subunits. Nevertheless, the use of whole parasite or their subunits for vaccine production has numerous disadvantages. Therefore, the use of Leishmania peptides to design more specific vaccines against leishmaniases seems promising. Moreover, peptides have several benefits in comparison with other kinds of antigens, for instance, good stability, absence of potentially damaging materials, antigen low complexity, and low-cost to scale up. By contrast, peptides are poor immunogenic alone, and they need to be delivered correctly. In this context, several approaches described in this review are useful to solve these drawbacks. Approaches, such as, peptides in combination with potent adjuvants, cellular vaccinations, adenovirus, polyepitopes, or DNA vaccines have been used to develop peptide-based vaccines. Recent advancements in peptide vaccine design, chimeric, or polypeptide vaccines and nanovaccines based on particles attached or formulated with antigenic components or peptides have been increasingly employed to drive a specific immune response. In this review, we briefly summarize the old, current, and future stands on peptide-based vaccines, describing the disadvantages and benefits associated with them. We also propose possible approaches to overcome the related weaknesses of synthetic vaccines and suggest future guidelines for their development.


Subject(s)
Leishmaniasis Vaccines/immunology , Leishmaniasis/prevention & control , Vaccines, Subunit/immunology , Adjuvants, Immunologic , Animals , Antigens, Protozoan/immunology , Clinical Trials as Topic , Humans , Leishmaniasis/immunology , Leishmaniasis Vaccines/genetics , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/prevention & control , Mice , Peptide Mapping , Vaccination , Vaccines, Subunit/genetics
20.
Iran J Basic Med Sci ; 21(4): 388-394, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29796222

ABSTRACT

OBJECTIVES: Leishmaniasis is endemic in 88 countries. Amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection. Monoclonal antibodies are key reagents used in the diagnosis of infectious and non-infectious diseases. The aim of this study was to produce monoclonal antibodies against axenic amastigotes of the Leishmaniainfantum strain in Iran. MATERIALS AND METHODS: First, standard strains were cultured and axenic amastigote antigens of L. infantum were obtained. Since then, BALB/c smice were immunized and antibody titers were determined. For hybridoma cell formation, lymphocytes isolated from spleen of immunized mice and myeloma cells were fused at a ratio of 10 to 1 in the presence of polyethylene glycol, followed by limiting dilution for the isolation of monoclones. Subsequently, antibody isotypes were determined by using the isotyping kit. The best clone was injected intraperitoneally to pristane-primed mice for large scale production of monoclonal antibodies. The specificity of antibody was determined with Western blotting. RESULTS: Approximately 25 positive monoclones were obtained, of which four hybrids producing anti-amastigotes L. infantum monoclonal antibodies with high optical density (OD), selected and designated as 8D2 FVI6, 8D2 FVI3, 6G2 FV4 and 6G2 FV3. Results from isotype determination showed the IgG2b sub-class in 6G2FV2 and 8D2FVI6 monoclones. CONCLUSION: This study produced monoclonal antibody against amastigotes of Iranian strain of L. infantum for the first time. These antibodies have reactivity against Iranian strain of L. infantum and can be used in the diagnosis of Kala-azar.

SELECTION OF CITATIONS
SEARCH DETAIL