Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
J Environ Manage ; 368: 122162, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39128352

ABSTRACT

Husks of rice (RH), coffee (CH), and cholupa (CLH) were used to produce natural adsorbents. The natural adsorbents were used to remove pharmaceuticals such as diclofenac, ciprofloxacin, and acetaminophen in a mixture of distilled water. However, CH stood out for its efficiency in removing ciprofloxacin (74%) due to the higher concentration of acidic groups, as indicated by the Boehm method. In addition, CH removed 86% of ciprofloxacin individually. Therefore, CH was selected and used to remove other fluoroquinolones, such as levofloxacin and Norfloxacin. Although electrostatic interactions favored removals, better removal was observed for ciprofloxacin due to its smaller molecular volume. Then, ciprofloxacin was selected, and the effect of pH, matrix, and adsorbent doses were evaluated. In this way, using a pH of 6.2 in urine with a dose of 1.5 g L-1, it is possible to adsorb CIP concentrations in the range (0.0050-0.42 mmol L-1). Subsequently, the high R2 values and low percentages of APE and Δq indicated better fits for pseudo-second-order kinetics, suggesting a two-stage adsorption. At the same time, the Langmuir isotherm recommends a monolayer adsorption with a Qm of 25.2 mg g-1. In addition, a cost of 0.373 USD/g CIP was estimated for the process, where the material can be reused up to 4 times with a CIP removal in the urine of 51%. Consequently, thermodynamics analysis showed an exothermic and spontaneous process with high disorder. Furthermore, changes in FTIR analysis after adsorption suggest that CH in removing CIP in urine involves electrostatic attractions, hydrogen bonds and π-π interactions. In addition, the life cycle analysis presents, for the 11 categories evaluated, a lower environmental impact of the CIP removal in urine with CH than for the preparation of adsorbent, confirming that the adsorption process is more environmentally friendly than materials synthesis or other alternatives of treatments. Furthermore, future directions of the study based on real applications were proposed.


Subject(s)
Water Pollutants, Chemical , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Ciprofloxacin/chemistry , Ciprofloxacin/urine , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/urine
2.
Parasitol Res ; 123(6): 249, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907803

ABSTRACT

Species of Haemogregarina are blood parasites known to parasitise vertebrate hosts, including fishes (Haemogregarina sensu lato) and freshwater turtles (Haemogregarina sensu stricto). Their vectors, include gnathiid isopods and leeches, respectively. In turtles, Haemogregarina balli has the best-characterized life cycle in the genus. However, no studies in Brazil have suggested a possible vector for any species of Haemogregarina from freshwater turtles. Therefore, in the present study, we provide insights into a leech vector based on specimens found feeding on two species of freshwater turtles, Podocnemis unifilis and Podocnemis expansa, using morphological and molecular data. In 2017 and 2019, freshwater turtles were collected in Goiás State, Brazil. Hosts were inspected for ectoparasites and leeches were collected from two specimens of P. expansa and nine specimens of P. unifilis. Leeches were subsequently identified as members of the genus Unoculubranchiobdella. Leech histological slides revealed haemogregarine-like structures, similar to post-sporogonic merogony, found near the gills and within the posterior sucker. Molecular analysis of the haemeogregarines resulted in the identification of three species of Haemogregarina: Haemogregarina embaubali, Haemogregarina goianensis, and Haemogregarina brasiliana. Therefore, our findings, based on morphology and DNA data suggest leeches of the genus Unoculubranchiondella as vectors for at least three species of Haemogregarina from Brazilian turtles.


Subject(s)
Fresh Water , Leeches , Turtles , Animals , Turtles/parasitology , Brazil , Fresh Water/parasitology , Leeches/classification , Leeches/anatomy & histology , Leeches/parasitology , Phylogeny , Disease Vectors , Eucoccidiida/isolation & purification , Eucoccidiida/genetics , Eucoccidiida/classification
3.
Nanomaterials (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38869535

ABSTRACT

The ceramic tile industry, with significant energy and material demands in its manufacturing processes, has employed technological innovations in energy efficiency, advanced equipment and tile thickness reduction to address these challenges. This study aimed to assess the impact of Ag2O, CuFe2O4, Fe3O4, and SiO2 nanoparticles (0%, 1%, and 5% by weight) on the mechanical strength, water absorption, and apparent thermal conductivity of ceramic tiles, as well as their capacity to reduce energy and raw material consumption. This reduction translates into a decrease in environmental impacts, which have been evaluated through life cycle assessment (LCA) methodology applied to the manufacturing processes. Nanoparticles (Ag2O, CuFe2O4, Fe3O4, and SiO2) were initially screened on TF clay (0%, 1%, 5% w/w), and the most effective were applied to CR1 and CR2 clays (0%, 1%, 5% w/w). Findings indicated a 32% increase in temperature gradient and a 16% improvement in flexural strength with the addition of Fe3O4 nanoparticle at 1% (w/w) in TF clay. Furthermore, there was a potential 48% reduction in energy consumption, and up to 16% decrease in tile weight or thickness without affecting the flexural strength property of the test tiles. LCA results demonstrated that the addition of Fe3O4 nanoparticle has potential reductions of up to 20% in environmental impacts. This study suggests that nanoparticle addition offers a viable alternative for reducing energy and material consumption in the ceramic tile industry. Future research should focus on assessing the economic impact of transitioning to a sustainable business model in the ceramic tile industry with nanoparticles addition.

4.
Sci Total Environ ; 930: 172568, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38649048

ABSTRACT

Diet shift is an opportunity to mitigate the impacts of food systems, which are responsible for about a third of greenhouse gas (GHG) emissions globally and exert various environmental pressures on ecosystems. This study evaluates the mitigation potential of both global and local environmental impacts through dietary changes within the Brazilian context. Furthermore, the study aims to identify the potential benefits and trade-offs that may arise from these dietary transitions, thus providing a comprehensive analysis of the overall environmental implications. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impacts of a conventional diet in Brazil and seven alternatives, namely adjusted-EAT-Lancet, pescatarian, vegetarian, entomophagic (insect-based food), mycoprotein (microbial-based food), and synthetic (cell-based food) diets. Results indicate a substantial mitigation potential for GHG emissions (4-9 kg CO2e/cap/day) (39 % to 86 %) and land use (4-9 m2/cap/day) (38 % to 82 %) through a diet shift from a conventional diet to any of the seven alternative diets. However, certain trade-offs exist. A diet shift demonstrates no mitigation potential of soil acidification, and opportunities to reduce water eutrophication (0.02-0.2 g Pe/cap/day) (2 % to 24 %) and water consumption (0.2-0.5 m3/cap/day) (7 % to 14 %) were only found by completely substituting animal products for insect-based food, microbial-based food, and cell-based food. This study highlights the considerable potential of dietary changes to mitigate global environmental impacts associated with food systems. By revealing opportunities and challenges, this study supports science-based decision-making and guides efforts toward sustainable and environmentally friendly food consumption patterns.


Subject(s)
Diet , Ecosystem , Greenhouse Gases , Brazil , Greenhouse Gases/analysis , Climate Change , Conservation of Natural Resources
5.
Article in English | MEDLINE | ID: mdl-38592628

ABSTRACT

Biosurfactants have been profiled as a sustainable replacement for chemical-based surfactants since these bio-based molecules have higher biodegradability. Few research papers have focused on assessing biosurfactant production to elucidate potential bottlenecks. This research aims to assess the techno-economic and environmental performance of surfactin production in a potential scale of 65m3, considering different product yields and involving the European energy crisis of 2021-2022. The conceptual design, simulation, techno-economic, and environmental assessments were done by applying process engineering concepts and software tools such as Aspen Plus v.9.0 and SimaPro v.8.3.3. The results demonstrated the high economic potential of surfactin production since the higher values in the market offset the low fermentation yields, low recovery efficiency, and high capital investment. The sensitivity analysis of the economic assessment elucidated a minimum surfactin selling price between 29 and 31 USD/kg of surfactin, while a minimum processing scale for economic feasibility between 4 and 5 kg/h is needed to reach an equilibrium point. The environmental performance must be improved since the carbon footprint was 43 kg CO2eq/kg of surfactin. The downstream processing and energy demand are the main bottlenecks since these aspects contribute to 63 and 25% of the total emissions. The fermentation process and downstream process are key factors for future optimization and research.

6.
PeerJ ; 12: e17087, 2024.
Article in English | MEDLINE | ID: mdl-38623496

ABSTRACT

Background: Spodoptera frugiperda (FAW) is a pest that poses a significant threat to corn production worldwide, causing millions of dollars in losses. The species has evolved into two strains (corn and rice) that differ in their genetics, reproductive isolation, and resistance to insecticides and Bacillus thuringiensis endotoxins. The microbiota plays an important role in insects' physiology, nutrient acquisition, and response to chemical and biological controls. Several studies have been carried out on FAW microbiota from larvae guts using laboratory or field samples and a couple of studies have analyzed the corn strain microbiota across its life cycle. This investigation reveals the first comparison between corn strain (CS) and rice strain (RS) of FAW during different developmental insect stages and, more importantly, endosymbiont detection in both strains, highlighting the importance of studying both FAW populations and samples from different stages. Methods: The composition of microbiota during the life cycle of the FAW corn and rice strains was analyzed through high-throughput sequencing of the bacterial 16S rRNA gene using the MiSeq system. Additionally, culture-dependent techniques were used to isolate gut bacteria and the Transcribed Internal Spacer-ITS, 16S rRNA, and gyrB genes were examined to enhance bacterial identification. Results: Richness, diversity, and bacterial composition changed significantly across the life cycle of FAW. Most diversity was observed in eggs and males. Differences in gut microbiota diversity between CS and RS were minor. However, Leuconostoc, A2, Klebsiella, Lachnoclostridium, Spiroplasma, and Mucispirilum were mainly associated with RS and Colidextribacter, Pelomonas, Weissella, and Arsenophonus to CS, suggesting that FAW strains differ in several genera according to the host plant. Firmicutes and Proteobacteria were the dominant phyla during FAW metamorphosis. Illeobacterium, Ralstonia, and Burkholderia exhibited similar abundancies in both strains. Enterococcus was identified as a conserved taxon across the entire FAW life cycle. Microbiota core communities mainly consisted of Enterococcus and Illeobacterium. A positive correlation was found between Spiroplasma with RS (sampled from eggs, larvae, pupae, and adults) and Arsenophonus (sampled from eggs, larvae, and adults) with CS. Enterococcus mundtii was predominant in all developmental stages. Previous studies have suggested its importance in FAW response to B. thuringensis. Our results are relevant for the characterization of FAW corn and rice strains microbiota to develop new strategies for their control. Detection of Arsenophonus in CS and Spiroplasma in RS are promising for the improvement of this pest management, as these bacteria induce male killing and larvae fitness reduction in other Lepidoptera species.


Subject(s)
Bacillus thuringiensis , Microbiota , Oryza , Animals , Male , Spodoptera/genetics , Zea mays/genetics , Oryza/genetics , RNA, Ribosomal, 16S/genetics , Life Cycle Stages , Larva/genetics , Bacillus thuringiensis/genetics , Microbiota/genetics
7.
Materials (Basel) ; 17(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673170

ABSTRACT

The recycling of fly ash from municipal solid waste incineration is currently a global issue. This work intends to examine the viability of a novel recycling alternative for fly ashes as a component of fire-resistant plates. To lessen the quantity of heavy metal leaching, the fly ash was utilized after being washed using a water/fly ash ratio of 2 for one hour. Subsequently, an inexpensive, straightforward molding and curing process was used to create a plate, with a composition of 60%wt of MSWI-FA, 30%wt of gypsum, 0.5%wt of glass fiber and 9.5%wt of vermiculite. The plate exhibited high fire resistance. Furthermore, it demonstrated compression, flexural strength and surface hardness slightly lower than the requirements of European Standards. This allows for manufacturing plates with a high washed MSWI-FA content as fire protection in firewalls and doors for homes and commercial buildings. A Life Cycle Assessment was carried out. The case study shows that a 60% substitution of gypsum resulted in an environmental impact reduction of 8-48% for all impact categories examined, except four categories impacts (marine eutrophication, human toxicity (cancer), human non-carcinogenic toxicity and water depletion, where it increased between 2 and 718 times), due to the previous washing of MSWI-FA. When these fly ashes are used as a raw material in fire-resistant materials, they may be recycled and offer environmental advantages over more conventional materials like gypsum.

8.
Trop Anim Health Prod ; 56(4): 145, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38676831

ABSTRACT

In order to analyze the environmental performance of Smallholder Dairy Farms (SHDFs) located in the State of Mexico, a Life Cycle Analysis (LCA) was carried out using two methodological approaches (A1 and A2) to estimate and interpret environmental impacts. A1 consisted in obtaining the average inputs and outputs of 15 SHDFs to generate a representative farm life cycle inventory, while A2 included an individual environmental impact analysis per SHDF to obtain average values of the contributions per analyzed midpoint impact category. The feed production subsystem generated the highest contributions to environmental impacts per liter of raw milk produced. Estimated emissions based on A2 approach, resulted in higher environmental impacts compared to results obtained with A1. The estimated values for the midpoint impact categories obtained with A2: Climate change, Fossil depletion, Terrestrial acidification, and Agricultural land occupation, were 8.73%, 30.77%, 100%, and 20.49% higher compared to A1 approach, respectively. While A2 provides more accurate results, it requires more time and resources compared to the integration of a panel of representative dairy farms.


Subject(s)
Dairying , Environment , Mexico , Dairying/methods , Animals , Cattle , Milk/chemistry , Climate Change
9.
Environ Sci Pollut Res Int ; 31(15): 22319-22338, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430439

ABSTRACT

Advanced oxidation processes (AOPs) are wastewater treatment technologies that stand out for their ability to degrade Contaminants of Emerging Concern (CECs). The literature has extensively investigated these removal processes for different aqueous matrices. Once technically mature, some of these systems have become accredited to be applied on a large scale, and therefore, their systemic performances in the environmental and cost spheres have also become essential requirements. This study proposed corroborating this trend, analyzing the available literature on the subject to verify how experts in the AOP area investigated this integration during 2015-2023. For this purpose, a sample of publications was treated by applying the Systematic Review (SR) methodology. This resulted in an extract of 83 studies that adopted life-cycle logic to estimate environmental impacts and process costs or evaluated them as complementary to the technical dimension of each treatment technology. This analysis found that both dimensions can be used for selecting or sizing AOPs at the design scale. However, the appropriate choice of the impact categories for the environmental assessment and establishing a methodology for cost analysis can make the approach still more effective. In addition, a staggering number of processes would broaden the reality and applicability of the estimates, and adopting multicriteria analysis methodologies could address essential aspects of decision-making processes during the design of the arrangements. By meeting the original purposes, the study broadened the requirements for designing AOPs and disseminating their use in mitigating the discharge of CECs.


Subject(s)
Bibliometrics , Oxidation-Reduction , Wastewater/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods
10.
Mar Pollut Bull ; 202: 116293, 2024 May.
Article in English | MEDLINE | ID: mdl-38537497

ABSTRACT

We employed a meta-analysis to determine if the presumed resilience of decapods to ocean acidification extends to all biological aspects, environments, and life stages. Most response categories appeared unaffected by acidification. However, certain fitness-related traits (growth, survival, and, to some extent, calcification) were impacted. Acid-base balance and stress response scaled positively with reductions in pH, which maintains homeostasis, possibly at the cost of other processes. Juveniles were the only stage impacted by acidification, which is believed to reduce recruitment. We observed few differences in responses to acidification among decapods inhabiting contrasting environments. Our meta-analysis shows decapods as a group slightly to moderately sensitive to low pH, with impacts on some biological aspects rather than on all specific life stages or habitats. Although extreme pH scenarios may not occur in the open ocean, coastal and estuarine areas might experience lower pH levels in the near to medium future, posing potential challenges for decapods.


Subject(s)
Decapoda , Seawater , Animals , Decapoda/physiology , Decapoda/growth & development , Ecosystem , Hydrogen-Ion Concentration , Life History Traits , Seawater/chemistry
12.
Environ Sci Pollut Res Int ; 31(10): 15973-15985, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308782

ABSTRACT

Sustainability is a core topic for all sectors including geotechnical engineering (e.g., design of foundations, earthworks structures, and pavements for major infrastructure and building projects). Despite being comprised of environmental, economic, and social pillars, most sustainability studies in this area have focused on the first. Furthermore, social impacts and the three pillars integration are little explored. As a result, there is a lack of systemic and holistic assessments of innovative geotechnical alternatives. This research advances in this area by performing a complete sustainability assessment and integration of the environmental, economic, and social pillars of two expansive soil stabilization alternatives: (i) sugar cane bagasse ash combined with hydrated eggshell lime alkali-activated by sodium hydroxide (NaOH) and (ii) Portland cement. Individual analyses were carried out to determine the environmental, economic, and social impacts, and the single sustainability index. Alkali-activated binder dosages showed higher impacts in 4 out of 10 environmental categories. For both binders, high-density/low-binder dosages contributed to environmental and economic sustainability as they require lower quantities of raw materials and diesel for materials transportation. The total costs of alkali-activated binder dosages ($189.79 and $154.45) were higher than that of Portland cement ($72.49 and $54.04), mainly due to the high cost of NaOH acquisition. However, the alkali-activated binder dosages implied lower carbon dioxide (CO2) emissions and thus lower social cost of CO2. The alternative binder presented a higher positive social impact. The alkali-activated high-density/low binder dosage is the most sustainable soil stabilization strategy.


Subject(s)
Cellulose , Saccharum , Soil , Animals , Soil/chemistry , Social Change , Carbon Dioxide , Egg Shell , Sodium Hydroxide , Alkalies
13.
Animals (Basel) ; 14(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38200896

ABSTRACT

Two trials were conducted to evaluate the effect of a garlic and citrus extract supplement (GCE) on the milk production performance and carbon footprint of grazing dairy cows in a Chilean commercial farm. A total of 36 early- to mid-lactation and 54 late-lactation Irish Holstein-Friesian cows were used in Trial 1 and Trial 2, respectively. In both trials, the cows were reared under grazing conditions and offered a supplementary concentrate without or with GCE (33 g/cow/d) for 12 weeks. The concentrate was fed in the afternoon when the cows visited the milking parlour. Consequently, the results of milk production performance in these trials were used to determine the effect of feeding with GCE on the carbon footprint (CFP) of milk using a life cycle assessment (LCA) model. In Trial 1 and Trial 2, feeding with GCE increased estimated dry matter intake (DMI, kg/d) by 8.15% (18.4 vs. 19.9) and 15.3% (15.0 vs. 17.3), energy-corrected milk (ECM, kg/d) by 11.4% (24.5 vs. 27.3) and 33.5% (15.5 vs. 20.7), and feed efficiency (ECM/DMI) by 3.03% (1.32 vs. 1.36) and 17.8% (1.01 vs. 1.19), respectively. The LCA revealed that feeding with GCE reduced the emission intensity of milk by 8.39% (1.55 vs. 1.42 kg CO2-eq/kg ECM). Overall, these results indicate that feeding with GCE improved the production performance and CFP of grazing cows under the conditions of the current trials.

14.
Sci Total Environ ; 912: 169085, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38056636

ABSTRACT

Lima faces increasing water stress due to demographic growth, climate change and outdated water management infrastructure. Moreover, its highly centralized wastewater management system is currently unable to recover water or other resources. Hence, the primary aim of this study is to identify suitable wastewater treatment alternatives for both eutrophication mitigation and indirect potable reuse (IPR). For eutrophication mitigation, we examined MLE, Bardenpho, Step-feed, HF-MBR, and FS-MBR. For IPR, we considered secondary treatment+UF + RO + AOP or MBR + RO + AOP. These alternatives form part of a WWTP network at a district level, aiding Lima's pursuit of a circular economy approach. This perspective allows reducing environmental impacts through resource recovery, making the system more resilient to disasters and future water shortages. The methods used to assess these scenarios were Life Cycle Assessment for the environmental dimension; Life Cycle Costing for the economic perspective; and Multi-Criteria Decision Analysis to integrate both the quantitative tools aforementioned and qualitative criteria for social and techno-operational dimensions, which combined, strengthen the decision-making process. The decision-making steered towards Bardenpho for eutrophication abatement when environmental and economic criteria were prioritized or when the four criteria were equally weighted, while HF-MBR was the preferred option when techno-operational and social aspects were emphasized. In this scenario, global warming (GW) impacts ranged from 0.23 to 0.27 kg CO2eq, eutrophication mitigation varied from 6.44 to 7.29 g PO4- equivalent, and costs ranged between 0.12 and 0.17 €/m3. Conversely, HF-MBR + RO + AOP showed the best performance when IPR was sought from the outset. In the IPR scenario, GW impacts were significantly higher, at 0.46-0.51 kg CO2eq, eutrophication abatement was above 98 % and costs increased to ca. 0.44 €/m3.

15.
Neotrop Entomol ; 53(1): 101-109, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37878204

ABSTRACT

The present study describes the immature stages of Opoptera syme (Hübner, [1821]) using SEM and Micro-CT to generate 2D and 3D models to study the morphology and chaetotaxy, and present information on the natural history, behavior, and population biology. In laboratory, eggs were laid singly, and the isolated larvae passed through six to seven instars. Host plant in the study site is unknown, but larvae are known to feed on bamboos; in laboratory, larvae accepted the ornamental bamboo Bambusa textilis McClure, 1940. Adults are diurnal and univoltine, flying from December to April (the austral summer). The present study adds information to the biology and natural history of Brassolini, an iconic and still poorly known tribe of Neotropical butterflies.


Subject(s)
Butterflies , Lepidoptera , Animals , Butterflies/anatomy & histology , Brazil , Larva/anatomy & histology , Seasons , Biology
16.
Environ Sci Pollut Res Int ; 31(7): 9992-10012, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37697196

ABSTRACT

Analysing municipal solid waste (MSW) management scenarios is relevant for planning future policies and actions toward a circular economy. Life cycle assessment (LCA) is appropriate for evaluating technologies of MSW treatment and their environmental impacts. However, in developing countries, advanced assessments are difficult to introduce due to the lack of technical knowledge, data and financial support. This research aims to assess the main potentialities of the introduction of waste-to-energy (WtE) systems in a developing Argentinean urban area considering the existing regulations about MSW recycling goals. The study was conducted with WRATE software and the proposed scenarios were current management, grate incineration of raw MSW and incineration of solid recovered fuel (SRF). In addition, a sensitivity analysis on the energy matrix was included. It was found that the production of SRF allows increasing the energy generation from waste by 200% and reducing the environmental impact of about 10% regarding the current MSW management system. Acidification Potential and Abiotic Depletion Potential were sensitive to changes in electricity mix. Results showed that if MSW reduction goals are achieved, changes in MSW composition will affect the performance of WtE plants and, in some cases, they will be not technically feasible. The outcomes of this study can be of interest for developing countries stakeholders and practitioners interested in LCA and sustainable MSW management.


Subject(s)
Refuse Disposal , Waste Management , Animals , Solid Waste , Refuse Disposal/methods , Argentina , Waste Management/methods , Incineration , Conservation of Natural Resources , Life Cycle Stages
17.
Int J Legal Med ; 138(1): 165-175, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37272984

ABSTRACT

Forensic entomology requires knowledge of the developmental rates of the species that colonize a body after death to estimate the postmortem interval (PMI). These developmental rates may vary depending not only on the species but also on the geographic location due to population differences. Therefore, the objectives of this work were to determine the developmental duration of the forensically important fly Chrysomya megacephala under constant controlled and field condition temperatures and to compare these results, through a meta-analysis, with data reported by other authors on populations from different localities. For this, C. megacephala colonies were established in the laboratory, and the duration of the life cycle was studied at two controlled temperatures (25 °C and 27 °C) and field conditions (27.5 ± 3.2 °C). Analysis of variance was performed to determine differences in developmental time and larval length between constant laboratory temperatures and field conditions. A generalized linear model was performed with predictor variables extracted from the literature (diet, relative humidity, latitude, longitude) to evaluate the effect of population variation on developmental times. The results showed significant differences in developmental times between 25 and 27 °C. As expected, the complete life cycle of C. megacephala was shorter at 27 °C. Finally, the meta-analysis suggested differences between the developmental times of different populations, based on temperature and geographic location. The results of this study provide fundamental developmental data to use C. megacephala in PMI estimations. Finally, we suggest that, when making expert reports, information from local populations should be used to determine a more accurate and reliable PMI.


Subject(s)
Coleoptera , Diptera , Forensic Entomology , Animals , Calliphoridae , Temperature , Larva , Life Cycle Stages
18.
Rev. Soc. Bras. Med. Trop ; Rev. Soc. Bras. Med. Trop;57: e00706, 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1559175

ABSTRACT

ABSTRACT Background: Pressatia choti is a common sand fly found in the Atlantic Forest of Brazil, which is suspected to be involved in the transmission of Leishmania braziliensis. Herein, we aimed to establish a Pr. choti laboratory colony. Methods: Wild-caught female sand flies were blood fed on hamsters and maintained under controlled conditions (temperature: 26 °C; relative humidity: 70%). Results: Of the 301 collected female sandflies, 288 were identified as Pr. choti. The life cycle duration ranged from 31 to 56 days. Conclusions: We successfully established a Pr. choti colony, whose biological parameters were similar to those of other neotropical sand flies.

19.
Food Res Int ; 174(Pt 1): 113645, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37986485

ABSTRACT

Okara is the insoluble pulp that remains after the grinding and filtration of soybeans during the production of soymilk and tofu. As it retains a noteworthy quantity of nutrients, there has been an increasing emphasis in the utilization of this residue for the development of sustainable processes. This study focused on assessing the environmental impact of employing okara as a medium for fermenting and dehydrating probiotic bacteria at laboratory scale. The evaluation was carried out using the Life Cycle Assessment (LCA) methodology, considering the entire process lifecycle. Whole okara and defatted okara were used as culture media for Lactiplantibacillus plantarum CIDCA 83114, followed by dehydration (either freeze-drying or spray-drying) and subsequent storage. For the purpose of comparison, both scenarios (whole and defatted okara) were evaluated using 1 kg of dehydrated final product for storage, as functional unit. Based on experimental results, the conservation of the received okara and the dehydration-storage (e.g., freezing and freeze-drying) phases were identified as the most significant environmental hotspots responsible for the most substantial impacts of the processes. The use of LCA facilitated the measurement of the environmental effects linked to the reutilization of okara as an agro-industrial residue, thus providing quantitative support when engineering its sustainable valorization.


Subject(s)
Dehydration , Soy Milk , Glycine max/chemistry , Fermentation , Environment
20.
J Helminthol ; 97: e80, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919931

ABSTRACT

In South America, the knowledge of trematode diversity parasitizing freshwater fishes is still scarce, as less than 5% of the freshwater fish fauna has been examined for parasites. A similar situation applies to studies on digenean life cycles, which have become increasingly rare. Among the digenean families parasitizing freshwater fishes in the region, Haploporidae is considered the richest in species diversity. However, information about the developmental stages of haploporid life cycles remains fragmentary. Particularly, in Argentina, nine cercariae attributed to the family Haploporidae have been described using morphological analysis, and only two life cycles of this family have been completely elucidated. In this study a new type of cercaria, morphologically assigned to the family Haploporidae and collected from the snail Heleobia parchappii (Cochliopidae) in Los Padres shallow lake, Buenos Aires province, was identified using morphological and molecular techniques. The molecular analysis, based on 28S and ITS2 sequences, revealed that the cercariae were 100% identical to adult specimens of Saccocoelioides nanii (Haploporidae) parasitizing the fish Prochilodus lineatus (Prochilodontidae) from Los Talas, Buenos Aires province. Our results not only provide information about the life cycle of S.nanii but also show that a molecular and morphological approach can be extremely useful in identifying the developmental stages of digeneans and elucidating their life cycles.


Subject(s)
Trematoda , Humans , Animals , Trematoda/genetics , Trematoda/anatomy & histology , Life Cycle Stages , Fishes , Cercaria/genetics , Argentina , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL