ABSTRACT
This study evaluated the effects of high-intensity pulsed light (PL) on sliced mortadella, assessing how the parameters pulse width (1260 to 2520 µs) and number of pulses (one to three) influence color, oxidative stability, and Listeria monocytogenes population. The different PL parameters generated a fluence ranging from 2.64 to 6.57 J/cm2 and irradiance ranging from 1046.9 to 1738.8 W/cm2. The PL slightly increased the temperature and pH of the samples, and this elevation was well correlated to the higher number of pulses and higher fluence. The color parameter a* was reduced while b* values increased after PL application, with these effects being more significant in treatments with a higher number of pulses and higher fluence. The highest values of TBARS were found in treatments with higher fluence (5.28 and 6.57 J/cm2), which were characterized by the attribute "oxidized color" in sensory evaluation. The different PL conditions reduced the count of L. monocytogenes by up to 1.44 Log CFU/cm2. The treatment with a pulse width of 1260 µs, two pulses, fluence of 4.38 J/cm2, and irradiance of 1738.3 W/cm2 achieved the same efficacy in pathogen reduction as the treatments with higher fluence. Moreover, these PL conditions had a minimal impact on the color and oxidative stability of mortadella, demonstrating an effective balance between microbiological safety and quality preservation.
ABSTRACT
The aim was to apply a cassava starch/carboxymethyl cellulose blend-based edible coating added to a tocopherol mix to Brazil nuts and evaluate oxidative levels during storage. The edible coatings were prepared from a cassava starch/carboxymethyl cellulose blend and identified as control B (no soy lecithin and no tocopherol mix), L (with soy lecithin and no tocopherol mix), and LT and LT2 (with soy lecithin and tocopherol mix). In the forming solutions of the coatings, stability, viscosity, pH, and color were analyzed. The Brazil nuts were immersed in the solutions for 30 s, dried at 45 °C, and placed in an incubator at 25 °C. At 1, 7, 15, 30, 45, 60, 90, and 120 days of storage, mass loss, the browning index, conjugated dienes and trienes, the oxidative state by official methods, and the accelerated oxidation index were evaluated. The blend-forming solutions B, L, LT, and LT2 showed non-Newtonian and pseudoplastic behavior, excellent resistance to flow, and stability. The diene, triene, iodine value, peroxide value, p-anisidine value, and total oxidation indices showed that the application of the cassava starch/carboxymethyl cellulose blend-based edible coating added tocopherol mix, LT, and LT2 preserved the Brazil nuts up to 90 days of storage at 25 °C. PCA shows that all coatings applied to Brazil nuts promoted oil preservation in some evaluation periods, especially those added with a tocopherol mix. It is concluded that cassava starch/CMC added tocopherol mix edible coatings have a potential application as active packaging for foods, especially nuts.
ABSTRACT
The bioaccessibility of tannins as antioxidants in meat is essential to maximise their effectiveness in protecting the product. This property determines the amount of tannins available to interact with meat components, inhibiting lipid and protein oxidation and, consequently, prolonging shelf life and preserving the sensory quality of the product. The objective of this study was to evaluate the bioaccessibility of condensed tannins (CT) from Acacia mearnsii extract (AME) and their effect on the physico-chemical characteristics of fattened lamb meat. Thirty-six Dorset × Hampshire lambs (3 months old and 20.8 ± 3.3 kg live weight) were used. The lambs were distributed equally (n = 9) into four treatments: T1, T2, T3 and T4, which included a basal diet plus 0%, 0.25%, 0.5% and 0.75% of CT from AME, respectively. At the end of the fattening period, bioaccessibility was evaluated, the animals were slaughtered and a sample of the longissimus dorsi (LD) muscle was collected to assess colour, lipid oxidation, cooking weight loss and shear force on days 1, 4, 7 and 14 of shelf-life, in samples preserved at -20 °C. In addition, the long chain fatty acid profile was analysed. A completely randomised design was used, and the means were compared with Tukey's test (P < 0.05). The mean lightness (L*), yellowness (b*) and hue (H*) values were higher for T3 and T4. The addition of CT did not affect (P > 0.05) redness (a*), cooking weight loss (CWL) or shear force (SF). T4 decreased (P < 0.05) stearic acid and increased cis-9 trans-12 conjugated linoleic acid (CLA). Bioaccessibility was higher in the supplemented groups (T1 < T2, T3 and T4). In conclusion, supplementing CT from AME in the diet of lambs did not reduce lipid oxidation, but T3 or T4 improved some aspects of meat colour and CLA deposition.
Subject(s)
Proanthocyanidins , Animals , Sheep , Proanthocyanidins/pharmacokinetics , Antioxidants/pharmacokinetics , Biological Availability , Red Meat/analysis , Meat/analysis , Cooking , Plant Extracts/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistryABSTRACT
This study examined the effects of replacing alkaline phosphate (AP) with bamboo fiber (BF), isolated pea protein (PP), and mushroom powder (MP) on the nutritional, technological, oxidative, and sensory characteristics of low-sodium mortadellas. Results indicated that this reformulation maintained the nutritional quality of the products. Natural substitutes were more effective than AP in reducing water and fat exudation. This led to decreased texture profile analysis (TPA) values such as hardness, cohesiveness, gumminess, and chewiness. The reformulation reduced the L* values and increased the b* values, leading to color modifications rated from noticeable to appreciable according to the National Bureau of Standards (NBS) index. Despite minor changes in oxidative stability indicated by increased values in TBARS (from 0.19 to 0.33 mg MDA/kg), carbonyls (from 2.1 to 4.4 nmol carbonyl/mg protein), and the volatile compound profile, the sensory profile revealed a beneficial increase in salty taste, especially due to the inclusion of MP, which was enhanced by the synergy with BF and PP. In summary, the results confirmed the potential of natural alternatives to replace chemical additives in meat products. Incorporating natural antioxidants into future formulations could address the minor oxidation issues observed and enhance the applicability of this reformulation strategy.
Subject(s)
Agaricales , Dietary Fiber , Meat Products , Nutritive Value , Pea Proteins , Taste , Pea Proteins/chemistry , Animals , Meat Products/analysis , Dietary Fiber/analysis , Agaricales/chemistry , Humans , Antioxidants , Powders , Food Handling/methods , Male , Phosphates , Color , Oxidation-Reduction , Swine , Thiobarbituric Acid Reactive Substances/analysis , Female , Sasa/chemistryABSTRACT
Derived from industrial processing waste, peanut skins contain polyphenols that delay oxidative food spoilage. However, these compounds are susceptible to light, heat, and oxygen exposure. Microencapsulation provides a solution by offering protection from these factors. The aim of this study was to evaluate the protective effect of peanut skin extract microcapsules on the chemical, microbiological, and sensory property and shelf life of sunflower seeds during storage. Five roasted sunflower seed samples were prepared: control (S-C); added with butylhydroxytoluene (S-BHT); coated with carboxymethyl cellulose (S-CMC); coated with CMC and the addition of peanut skin crude extract (S-CMC-CE); coated with CMC and the addition of microcapsules (S-CMC-M20). Sensory acceptability was determined using hedonic testing. Chemical (peroxide value, conjugated dienes, hexanal and nonanal content, and fatty acid profile), microbiological, and descriptive analyses were carried out on samples stored for 45 days at room temperature. Shelf life was calculated using a simple linear regression. All samples were microbiologically fit for human consumption and accepted by consumer panelists, scoring above five points on the nine-point hedonic scale. S-CMC-M20 exhibited the lowest peroxide value (6.59 meqO2/kg) and hexanal content (0.4 µg/g) at the end of the storage. Estimated shelf life showed that S-MC-M20 (76.3 days) extended its duration nearly ninefold compared to S-C (8.3 days) and doubled that of S-CMC-CE (37.5 days). This indicates a superior efficacy of microencapsulated extract compared to its unencapsulated form, presenting a promising natural strategy for improving the shelf life of analogous food items. PRACTICAL APPLICATION: Incorporating peanut skin extract microcapsules in coating sunflower seeds presents a promising strategy to extend the shelf life of lipid-rich foods, capitalizing on the antioxidant properties of polyphenols. This innovative approach not only enhances nutritional quality but also addresses sustainability concerns by repurposing agro-industrial byproducts, such as peanut skins. By meeting consumer demand for functional foods with added health benefits, this technique offers potential opportunities for the development of novel, value-added food products while contributing to circular economy principles and waste management efforts.
Subject(s)
Arachis , Food Storage , Helianthus , Polyphenols , Seeds , Seeds/chemistry , Helianthus/chemistry , Food Storage/methods , Arachis/chemistry , Humans , Drug Compounding/methods , Consumer Behavior , Taste , Plant Extracts/chemistry , Plant Extracts/pharmacology , Food Preservation/methodsABSTRACT
This study aimed to evaluate the influence of medium voltage electrical stimulation (ES) at three different intensities, 200 V (Treatment 200 V, T200), 300 V (Treatment 200 V, T300), and 400 V (Treatment 400 V, T400) on the initial pH decline in post mortem muscle and the quality parameters on M. longissimus thoracis - Nellore beef, both throughout the ageing process and during frozen storage. The colour, cooking loss, and shear force parameters for samples of aged beef were determined. Additional parameters, like thaw loss, pH, and lipid oxidation were also analyzed for the frozen storage. The shear force and cooking loss decreased and colour parameters increased in Nellore beef ES compared with CON on ageing time (14 days). At frozen storage, quality parameters like pH, a*, and b* were reduced over time, and no negative effect on lipid oxidation was found. Electrical stimulation at 200 V demonstrated effectiveness for decreasing shear force to Nellore beef (M. longissimus thoracis) during frozen storage. The application of medium voltage electrical stimulation can contribute to improved quality and tenderness in Nellore beef, both during ageing and frozen storage conditions.
Subject(s)
Meat , Muscle, Skeletal , Animals , Cattle , Meat/analysis , Muscle, Skeletal/physiology , Electric Stimulation , Hydrogen-Ion Concentration , LipidsABSTRACT
This study developed chicken nuggets with emulsions with different percentages of canola oil (CO) to replace the chicken skin and evaluating the quality of the final product and the effect of frying. The experiment was set up in a 5x5 factorial scheme with the replacement of skin with different percentages of CO (0, 25, 50, 75, and 100%) and storage periods (0, 45, 90, 135,and 180 days), and parameters such as pH and oxidation were evaluated. It was considered a 5x2 factorial scheme (replacement of skin with CO and different sample conditions (raw and fried in CO)) for the analyses of the centesimal composition, fatty acid profile, atherogenic (AI), and thrombogenic (IT) indices. The sensory analysis evaluated the chicken nuggets at time zero. The pH values ranged from 6.62 to 6.86, as an effect of frying, there was an increase in lipid content with increasing levels of substitution (T0-raw: 5.36% and fried: 12.11%; T100-raw: 7.93% and fried: 15.43%) and a decrease in moisture content in relation to the raw sample. There was a decrease in AI (T0%-raw vs. T100%-fried, 0.39 vs. 0.10) and IT (T0%-raw vs. T100%-fried, 0.61 vs. 0.18) with CO addition and frying, and lipid oxidation increased with storage. The ω6/ω3 ratio decreased and the PUFA/SFA increased with the replacement of chicken skin with CO, but there was no difference in the sensory analysis. Even though chicken nuggets are prone to lipid oxidation, it is possible to improve their nutritional value either by adding CO to the meat mixture or by frying them.
Objetivou-se neste estudo desenvolver nuggets de frango com emulsões contendo diferentes percentagens de óleo de canola em substituição a pele de frango e avaliar a qualidade do produto final bem como os efeitos da fritura. O experimento foi desenvolvido em esquema fatorial 5x5 (substituição da pele por óleo de canola (0, 25, 50, 75, 100%) e tempo de armazenamento (0, 45, 90, 135, 180 dias)) avaliando parâmetros como pH e oxidação. Considerou-se fatorial 5x2 (substituição da pele por óleo de canola e condições da amostra (cru e frito em óleo de canola)) para as análises da composição centesimal, perfil de ácidos graxos e índices aterogênico (IA) e trombogênico (IT). Para a análise sensorial avaliou-se os nuggets de frango produzidos apenas no tempo zero. Houve efeito da fritura com aumento no teor de lipídios (T0%-cru:5,36% e frito:12,11%; T100%-cru:7,93% e frito: 15,43%), redução no teor de umidade em relação a amostra crua e aumento no teor de lipídios com aumento dos níveis de substituição. Com a adição de óleo de canola e fritura houve redução de IA (T0%, cru, IA:0,39; T100%, frito, IA:0,10) e IT (T0%, cru, IT:0,61; T100%, frito, IT:0,18) e com o tempo de armazenamento aumentou-se a oxidação lipídica. A proporção ω6/ ω3 diminuiu e a AGP/AGS aumentou com a substituição da pele de frango por óleo de canola e não houve diferença na análise sensorial. Apesar da propensão à oxidação lipídica, é possível melhorar nutricionalmente os nuggets de frango, tanto pela adição de óleo de canola à massa quanto pelo processo de fritura.
Subject(s)
Skin , Chickens , Rapeseed Oil , LipidsABSTRACT
The effect of ultrasound on Biceps femoris muscle tenderness was investigated using a 22 Central Composite Rotatable Design (CCRD) with triplicates at the central point. We evaluated the following independent variables: ultrasound intensity ranging from 11.30 to 33.90 W cm-2 and exposure time between 35 and 205 s. The ultrasound bath's frequency (80 kHz) and temperature (10 ºC) were the fixed ones. To validate the model, the muscle was treated at the CCRD's optimized condition (80 kHz, 22.60 W cm-2, 120 s, 10 ºC) evaluated, and compared with the muscle control sample (non-treated). A 22% shear force reduction was observed compared to the control sample (no ultrasound treatment) after 144 h, and stored at 5 ºC. Moreover, a sarcoplasmic calcium concentration increase was noted for ultrasound-treated muscle, probably activating the calpain enzyme system. In contrast, no significant influence (P > 0.05) was observed for pH, color index, lipid oxidation, water holding capacity, and drip loss by ultrasound treatment at the optimized conditions. Therefore, ultrasound application is promising and suitable for improving muscle tenderness without losing meat quality. This study highlighted the ultrasound effect on the tenderness of a less studied muscle (Biceps femoris) by combining short ultrasound exposure (120 s) and an 80 kHz frequency.
O efeito do ultrassom sob a maciez do músculo Biceps femoris foi avaliado usando um Delineamento Composto Central Rotacional (DCCR) 22 com triplicatas no ponto central. As variáveis independentes estudadas foram a intensidade do ultrassom que variou de 11,30 a 33,90 W cm-2 e o tempo de exposição de 35 e 205 s. A frequência do banho de ultrassom (80 kHz) e a temperatura (10 ºC) foram fixas. Para validar o modelo, a carne foi tratada na condição otimizada do DCCR (80 kHz, 22,60 W cm-2, 120 s, 10 ºC), avaliada e comparada à amostra controle (não tratada). Uma redução de 22% na força de cisalhamento foi observada em comparação à amostra controle após 144 h e armazenada a 5 ºC. Além disso, um aumento da concentração de cálcio sarcoplasmático foi observado para o músculo tratado com ultrassom, o que provavelmente ativou o sistema enzimático da calpaína. Em contraste, o tratamento com ultrassom nas condições otimizadas não influenciou significativamente (P > 0,05) o pH, cor, oxidação lipídica, capacidade de retenção de água e perda de gotejamento. Portanto, a aplicação do ultrassom é promissora e adequada para melhorar a maciez do músculo sem perder a qualidade da carne. Este estudo destacou o efeito do ultrassom na maciez de um músculo pouco estudado (Biceps femoris) ao combinar exposição curta ao ultrassom (120 s) e uma frequência de 80 kHz.
Subject(s)
Animals , Cattle , Ultrasonics , Hamstring Muscles , MeatABSTRACT
The influence of different concentrations of NaCl (2.5% and 1.75%), basic electrolyzed water (BEW), and ultrasound (US, 25 kHz, 159 W) on the quality of fresh sausages was studied. During storage at 5 °C, TBARS, pH, Eh, aw, nitrous pigments, and bacterial evolution were evaluated at three specific time intervals: 1d, 15d, and 30d. At the same time, the volatile compounds and sensory profile were specifically assessed on both the 1d and 30d. Notably, sausages with 1.75% NaCl and BEW displayed higher pH values (up to 6.30) and nitrous pigment formation, alongside reduced Eh (as low as 40.55 mV) and TBARS values (ranging from 0.016 to 0.134 mg MDA/kg sample), compared to the 2.5% NaCl variants. Protein content ranged between 13.01% and 13.75%, while lipid content was between 18.23% and 18.86%, consistent across all treatments. Psychrotrophic lactic bacteria showed a significant increase in low-NaCl sausages, ranging from 5.77 to 7.59 log CFU/g, indicative of potential preservative benefits. The sensory analysis favored the TUSBEW70 treatment for its salty flavor on the 30th day, reflecting a positive sensory acceptance. The study highlights that employing US and BEW in sausage preparation with reduced NaCl content (1.75%) maintains quality comparable to higher salt (2.5%) counterparts. These findings are crucial for meat processing, presenting a viable approach to producing healthier sausages with reduced sodium content without compromising quality, aligning with consumer health preferences and industry standards.
Subject(s)
Meat Products , Sodium Chloride , Thiobarbituric Acid Reactive Substances/analysis , Meat Products/analysis , Oxidation-Reduction , Oxidative Stress , Taste , ColorABSTRACT
Vacuum-packed lamb sausages with or without red propolis extract and a reduced sodium nitrite content were evaluated for oxidative and microbiological stability during storage for 21 days at 2 °C. The following treatments were evaluated: EN150 (control, base formulation (BF) + 500 mg/kg sodium erythorbate and 150 mg/kg sodium nitrite); EN75 (BF + 500 mg/kg sodium erythorbate and 75 mg/kg sodium nitrite); P1N75 (without the addition of erythorbate, BF + 1800 mg/kg propolis extract and 75 mg/kg sodium nitrite); and P2N75 (without the addition of erythorbate, BF + 3600 mg/kg propolis extract and 75 mg/kg sodium nitrite). Analyses were conducted to characterize the samples on day 0 with respect to the proximate composition (moisture, protein, fat, and ash) and sensory acceptance. Stability during refrigerated storage was evaluated on days 0, 7, 14 and 21 for the parameters pH, color profile (L*, a*, and b*), TBARs index (oxidative stability) and microbiological count of aerobic psychrotrophic microorganisms. Texture profile, cooking weight loss (WLC), peroxide index and free fatty acids were evaluated on days 0 and 21. The treatments with propolis and reduced nitrite (EN150 and P1N75) showed a red color intensity (a*) similar to the treatment with erythorbate and the same nitrite content (EN75) at the end of storage, maintaining the characteristic reddish color of the sausages. The extract slowed down lipid oxidation during storage, especially P2N75, which showed the lowest level of TBARS (0.39 mg MDA/kg) and the peroxide index (2.13 mEq g O2) on day 21. The residual nitrite value in EN75 was the lowest (p < 0.05) on day 21, showing that synthetic antioxidants are more efficient than the extract in nitrite reduction reactions. The results for the counts of psychrotrophic microorganisms showed that the extract did not have the expected antimicrobial effect on the growth of this microorganisms, and leveling the results revealed no differences (p < 0.05) between the treatments. Despite the red propolis extract not showing a significant antimicrobial improvement in lamb sausages, it can be considered a healthy option with good prospects for replacing synthetic antioxidants with a natural product.
ABSTRACT
Dactylopius opuntiae is an insect pest that contains at least carminic acid, which has antioxidant properties. Since there is a relationship between the antioxidant ability and preservative action of compounds applied to meat products, the purpose of this study was to evaluate the antioxidant activity and usefulness of a D. opuntiae extract for beef patty preservation. The insects were bred and processed to obtain a liquid extract. For the extract, its carminic acid content, antioxidant activity against two free radicals, and actions on food quality parameters were determined. The D. opuntiae dry powder contained 2.91% w/w carminic acid, while the liquid extract exhibited an IC50 value of 3437.8 ± 67.8 and 19633.0 ± 674.5 µg/mL against the DPPH and ABTS radicals. Nevertheless, these antioxidant actions were lower than those found in a D. coccus extract. The D. opuntiae extract improved in a short time the redness and yellowness, eliminated the unfavorable effect of their vehicle on the MetMb level, and greatly reduced the TBARS formation. For the first time, an extract of D. opuntiae was applied to beef patties, and its beneficial antioxidant action on meat acceptance parameters was confirmed, which has potential commercial applications.
ABSTRACT
Beef production in Uruguay is based on pasture (~85%) or concentrate (~15%), resulting in differences in meat quality. The objective of this study was to compare the oxidative stability and color of beef from these two systems during refrigerated retail display. For these purposes, the Semimembranosus muscle was removed from ten Aberdeen Angus steers raised and fed on pasture (130 days prior to slaughter) and from another ten steers fed concentrate (100 days prior to slaughter), sliced. The muscles were placed in a refrigerated showcase for 3, 6, and 9 days. The contents of ß-carotene, α-tocopherol, and fatty acids were determined before the meat was placed on display. Lipid and protein oxidation, color, and heme iron content were determined before and during display. The meat from pasture-fed steers had a lower intramuscular fat content (1.78 ± 0.15 vs. 4.52 ± 0.46), lower levels of monounsaturated fatty acids, a lower n-6/n-3 ratio, less lipid and protein oxidation, lower L* and a* values, and higher levels of α-linolenic acid, DHA, total n-3, ß-carotene, and α-tocopherol. In conclusion, the meat from pasture-fed steers was more stable during retail display from an oxidative point of view, which may be due to its higher levels of antioxidant compounds such as ß-carotene and α-tocopherol and had a healthier fatty acid profile for consumers.
ABSTRACT
The purpose of this study was to evaluate the effects of using calcium anacardate (CaA) as a source of anacardic acid and its association with citric acid (CA) in diets for breeding quails on the performance, the egg quality, incubation parameters, and progeny performance. Were used 540 quails European quails (Coturnix coturnix coturnix) that were 21 weeks old, housed in laying cages based on a completely randomized design, with nine treatments and six replications of 10 quails per parcel, with each experimental unit having eight females and two males. The following additions to the diet were evaluated: 1, no addition (control diet); 2, 0.25% CaA; 3, 0.25% CaA and 0.25% CA; 4, 0.50% CaA; 5, 0.50% CaA and 0.25% CA; 6, 0.50% CaA and 0.50% CA; 7, 0.75% CaA; 8, 0.75% CaA and 0.25% CA; and 9, 0.75% CaA and 0.50% CA. The treatments had no significant effects on the performance of the breeding quails, incubation parameters, and progeny performance. For egg quality, there was only an effect on yolk lipid oxidation, which was lower for eggs from quails fed the diets containing 0.50% CaA and 0.25% CA, 0.50% CaA and 0.50% CA, or 0.75% CaA alone, when compared with the control group. Considering that including CaA with or without CA in diets for breeding quails only affected yolk lipid oxidation, it can be recommend including 0.50% CaA and 0.25% CA or 0.75% CaA alone to mitigate oxidative damage in the yolk of fertile eggs.
Subject(s)
Calcium , Quail , Animals , Female , Male , Coturnix , Ovum , Calcium, Dietary , Diet/veterinary , Meat , Citric Acid , LipidsABSTRACT
The objective of this research was to evaluate the effectiveness of antioxidant-rich extracts from rose hip (Rosa canina L.; RC) and hawthorn (Crataegus monogyna Jacq.; CM) at minimizing the oxidative damage to proteins and lipids in beef patties subjected to a highoxygen (HiOx-MAP) and vacuum (Vacuum) packaging atmosphere. The extracts of RC and CM were characterized by quantifying bioactive compounds, namely, phenolic compounds, tocopherols and vitamin C. Both fruits had high concentrations of bioactive compounds, with RC having the highest total phenolic and vitamin C content. Yet, CM was the most efficient in protecting beef patties against protein carbonylation, reducing, as a result, the instrumental toughness in cooked beef patties. The use of CM and RC extracts in beef patties significantly improved consumer purchase intention in HiOx-MAP packaging systems. The use of CM and RC extracts or their combination in future research would be an effective antioxidant means to decrease the pro-oxidative effects caused by HiOx-MAP in red meat.
Subject(s)
Antioxidants , Crataegus , Animals , Cattle , Reactive Oxygen Species , Oxygen , Ascorbic Acid , Plant Extracts/pharmacologyABSTRACT
This study produced two gels: one solely using psyllium fiber (GP) and another combining this fiber with linseed oil (GL+P). Both gels replaced 15% and 30% of the animal fat content of salamis. The objective was to evaluate the impact of this lipid reformulation on the technological, nutritional, oxidative, and sensory properties of the salamis. The lipid reformulation did not alter the evolution of pH and lactic acid bacteria during processing. The addition of GL+P did not interfere with the product's drying process. However, replacing 30% of animal fat with the GP resulted in greater weight loss and a lower final Aw value. The lipid reformulation minimally affected the color of the salamis but significantly enhanced their nutritional profile. This improvement was marked by a decrease in fat content and an increase in protein. Specifically, in the samples with GL+P, there was a rise in linolenic acid content and a reduction in the n-6/n-3 PUFA ratio. Adding GP did not affect the salamis' oxidative stability and sensory profile. However, substituting 30% of the animal fat with GL+P increased the TBARS values, and volatile compounds derived from lipid oxidation hampered the products' sensory profiles. A reduction in these negative effects was observed when replacing 15% of the fat with GL+P, suggesting this to be the ideal dosage for balancing the nutritional benefits with maintaining the product's oxidative stability.
ABSTRACT
One hundred forty-four steers were group-housed in 24 pens that were randomly assigned to one of four dietary treatments defined by the proportion of wet distiller grain plus solubles (WDGS; 0, 15, 30, or 45%) and fed for 84 d pre-slaughter. Animal performance was evaluated using the pen as the experimental unit. Whereas for carcass and meat quality characteristics, meat oxidative stability, and the consumer sensory quality of longissimus thoracis muscle one animal from each pen was randomly selected and used as the experimental unit. No differences (P > 0.05) were observed for subcutaneous fat thickness, rib eye area, marbling score or pH, color parameters, proximate composition, sarcomere length, Warner Bratzler shear force, and cooking loss. Feeding WDGS linearly increased total PUFA (P = 0.05), C18:2 n-6 (P = 0.004) proportions, and n-6/n-3 ratio (P < 0.01) but reduced C16:1 to C18:0 ratio (P < 0.01). Lipid oxidation was greater in beef from steers fed 30% and 45% WDGS (P = 0.05). Dietary WDGS linearly improved (P < 0.05) flavor and overall linking score in the consumer sensory panel.
Subject(s)
Animal Feed , Zea mays , Cattle , Animals , Animal Feed/analysis , Meat/analysis , Diet/veterinary , Edible Grain/chemistry , Body CompositionABSTRACT
This review explores the antioxidant properties of oak (Quercus sp.) extracts and their potential application in preventing oxidative rancidity in food products. Oxidative rancidity negatively impacts food quality, causing changes in color, odor, and flavor and reducing the shelf life of products. The use of natural antioxidants from plant sources, such as oak extracts, has gained increasing interest due to potential health concerns associated with synthetic antioxidants. Oak extracts contain various antioxidant compounds, including phenolic acids, flavonoids, and tannins, which contribute to their antioxidative capacity. This review discusses the chemical composition of oak extracts, their antioxidative activity in different food systems, and the safety and potential challenges related to their application in food preservation. The potential benefits and limitations of using oak extracts as an alternative to synthetic antioxidants are highlighted, and future research directions to optimize their application and determine their safety for human consumption are suggested.
ABSTRACT
Hydrogelled emulsions (HEs) of linseed oil and pea protein (PP) were produced with four levels (0, 5, 7.5, and 10%) of raspberry extract obtained by a green extraction technique (microwave hydrodiffusion and gravity-MHG). HEs were applied in burgers to replace 50% of pork backfat content. The products' technological, nutritional, oxidative, microbiological, and sensory properties were evaluated. Besides reducing the fat level by approximately 43%, the reformulation reduced the n-6/n-3 PUFA ratio to healthy levels, decreased the diameter reduction by 30%, and increased the cooking yield by 11%. Including 7.5 and 10% of raspberry extract in the HEs decreased the oxidative defects caused by the enrichment of the burgers with omega-3 fatty acids. In addition, the raspberry extract did not cause alterations in the mesophilic aerobic count and the burgers' sensory profile.
ABSTRACT
This study focused on the quality loss inhibition of fish muscle during refrigerated storage. Two parallel experiments were carried out that were focused on the employment of pitaya (Stenocereus thurberi) extracts in biodegradable packing films. On the one hand, a pitaya-gelatin film was employed for hake (Merluccius merluccius) muscle storage. On the other hand, a pitaya-polylactic acid (PLA) film was used for Atlantic mackerel (Scomber scombrus) muscle storage. In both experiments, fish-packing systems were stored at 4 °C for 8 days. Quality loss was determined by lipid damage and microbial activity development. The presence of the pitaya extract led to an inhibitory effect (p < 0.05) on peroxide, fluorescent compound, and free fatty acid (FFA) values in the gelatin-hake system and to a lower (p < 0.05) formation of thiobarbituric acid reactive substances, fluorescent compounds, and FFAs in the PLA-mackerel system. Additionally, the inclusion of pitaya extracts in the packing films slowed down (p < 0.05) the growth of aerobes, anaerobes, psychrotrophs, and proteolytic bacteria in the case of the pitaya-gelatin films and of aerobes, anaerobes, and proteolytic bacteria in the case of pitaya-PLA films. The current preservative effects are explained on the basis of the preservative compound presence (betalains and phenolic compounds) in the pitaya extracts.