Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.804
Filter
1.
J Hazard Mater ; 477: 135304, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39088957

ABSTRACT

The utilization of biomass-assisted pyrolysis in the recycling of spent lithium-ion batteries has emerged as a promising and reliable process. This article furnishes theoretical underpinnings and analytical insights into this method, showcasing sawdust pyrolysis reduction as an efficient means to recycle spent LiMn2O4 and LiNi0.6Co0.2Mn0.2O2 batteries. Through advanced thermogravimetry-gas chromatography-mass spectrometry analysis complemented by traditional thermodynamic demonstration, the synergistic effects of biomass pyrolysis reduction are elucidated, with minor autodecomposition and major carbothermal and gasthermal reduction pathways identified. The controlled manipulation of transition metals has demonstrated the capability to modulate surface pyrolysis gas catalytic reactions and facilitate the preparation of composite materials with diverse morphologies. Optimization of process conditions has culminated in recovery efficiency exceeding 99.0 % for LiMn2O4 and 99.5 % for LiNi0.6Co0.2Mn0.2O2. Economic and environmental analyses underscore the advantages of biomass reduction and recycling for these two types of spent LIBs: low energy consumption, environmental compatibility, and high economic viability.

2.
Int J Biol Macromol ; : 134362, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089552

ABSTRACT

Healing diabetic ulcers with chronic inflammation is a major challenge for researchers and professionals, necessitating new strategies. To rapidly treat diabetic wounds in rat models, we have fabricated a composite scaffold composed of alginate (Alg) and silk fibroin (SF) as a wound dressing that is laden with molecules of lithium chloride (LC). The physicochemical, bioactivity, and biocompatibility properties of Alg-SF-LC scaffolds were investigated in contrast to those of Alg, SF, and Alg-SF ones. Afterward, full-thickness wounds were ulcerated in diabetic rats in order to evaluate the capacity of LC-laden scaffolds to regenerate skin. The characterization findings demonstrated that the composite scaffolds possessed favorable antibacterial properties, cell compatibility, high swelling, controlled degradability, and good uniformity in the interconnected pore microstructure. Additionally, in terms of wound contraction, re-epithelialization, and angiogenesis improvement, LC-laden scaffolds revealed better performance in diabetic wound healing than the other groups. This research indicates that utilizing lithium chloride molecules loaded in biological materials supports the best diabetic ulcer regeneration in vivo, and produces a skin replacement with a cellular structure comparable to native skin.

3.
Adv Mater ; : e2407070, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39091051

ABSTRACT

Single-atom catalysts (SACs) have been increasingly explored in lithium-sulfur (Li-S) batteries to address the issues of severe polysulfide shuttle effects and sluggish redox kinetics. However, the structure-activity relationship between single-atom coordination structures and the performance of Li-S batteries remain unclear. In this study, a P, S co-coordination asymmetric configuration of single atoms is designed to enhance the catalytic activity of Co central atoms and promote d-p orbital hybridization between Co and S atoms, thereby limiting polysulfides and accelerating the bidirectional redox process of sulfur. The well-designed SACs enable Li-S batteries to demonstrate an ultralow capacity fading rate of 0.027% per cycle after 2000 cycles at a high rate of 5 C. Furthermore, they display excellent rate performance with a capacity of 619 mAh g-1 at an ultrahigh rate of 10 C due to the efficient catalysis of CoSA-N3PS. Importantly, the assembled pouch cell still retains a high discharge capacity of 660 mAh g-1 after 100 cycles at 0.2 C and provides a high areal capacity of 4.4 mAh cm-2 even with a high sulfur loading of 6 mg cm-2. This work demonstrates that regulating the coordination environment of SACs is of great significance for achieving state-of-the-art Li-S batteries.

4.
Small ; : e2403847, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087374

ABSTRACT

Silicon monoxide (SiO) has attracted considerable interest as anode material for lithium-ion batteries (LIBs). However, their poor initial Coulombic efficiency (ICE) and conductivity limit large-scale applications. Prelithiation and carbon-coating are common and effective strategies in industry for enhancing the electrochemical performance of SiO. However, the involved heat-treatment processes inevitably lead to coarsening of active silicon phases, posing a significant challenge in industrial applications. Herein, the differences in microstructures and electrochemical performances between prelithiated SiO with a pre-coated carbon layer (SiO@C@PLi) and SiO subjected to carbon-coating after prelithiation (SiO@PLi@C) are investigated. A preliminary carbon layer on the surface of SiO before prelithiation is found that can suppress active Si phase coarsening effectively and regulate the post-prelithiation phase content. The strategic optimization of the sequence where prelithiation and carbon-coating processes of SiO exert a critical influence on its regulation of microstructure and electrochemical performances. As a result, SiO@C@PLi exhibits a higher ICE of 88.0%, better cycling performance and lower electrode expansion than SiO@PLi@C. The pouch-type full-cell tests demonstrate that SiO@C@PLi/Graphite||NCM811 delivers a superior capacity retention of 91% after 500 cycles. This work provides invaluable insights into industrial productions of SiO anodes through optimizing the microstructure of SiO in prelithiation and carbon-coating processes.

5.
Small ; : e2404440, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087387

ABSTRACT

Silicon (Si) is one of the most promising anode materials for high-energy-density lithium-ion batteries. However, the huge volume expansion hinders its commercial application. Embedding amorphous Si nanoparticles in a porous carbon framework is an effective way to alleviate Si volume expansion, with the pore volume of the carbon substrates playing a pivotal role. This work demonstrates the impact of pore volume on the electrochemical performance of the silicon/carbon porous composites from two perspectives: 1) pore volume affects the loadings of Si particles; 2) pore volume affects the structural stability and mechanical properties. The smaller pore volume of the carbon substrate cannot support the high Si loadings, which results in forming a thick Si shell on the surface, thereby being detrimental to cycling stability and the diffusion of electrons and ions. On top of that, the carbon substrate with a larger pore volume has poor structural stability due to its fragility, which is also not conducive to realizing long cycle life and high rate performance. Achieving excellent electrochemical performances should match the proper pore volume with Si content. This study will provide important insights into the rational design of the silicon/carbon porous composites based on the pore volume of the carbon substrates.

6.
Small ; : e2404135, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087389

ABSTRACT

To effectively solve the challenges of rapid capacity decay and electrode crushing of silicon-carbon (Si-C) anodes, it is crucial to carefully optimize the structure of Si-C active materials and enhance their electron/ion transport dynamic in the electrode. Herein, a unique hybrid structure microsphere of Si/C/CNTs/Cu with surface wrinkles is prepared through a simple ultrasonic atomization pyrolysis and calcination method. Low-cost nanoscale Si waste is embedded into the pyrolysis carbon matrix, cleverly combined with the flexible electrical conductivity carbon nanotubes (CNTs) and copper (Cu) particles, enhancing both the crack resistance and transport kinetics of the entire electrode material. Remarkably, as a lithium-ion battery anode, the fabricated Si/C/CNTs/Cu electrode exhibits stable cycling for up to 2300 cycles even at a current of 2.0 A g-1, retaining a capacity of ≈700 mAh g-1, with a retention rate of 100% compared to the cycling started at a current of 2.0 A g-1. Additionally, when paired with an NCM523 cathode, the full cell exhibits a capacity of 135 mAh g-1 after 100 cycles at 1.0 C. Therefore, this synthesis strategy provides insights into the design of long-life, practical anode electrode materials with micro/nano-spherical hybrid structures.

7.
Angew Chem Int Ed Engl ; : e202409256, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088255

ABSTRACT

Developing an anode material that has better performance efficiency than commercial graphite while keeping the features of economic scalability and environmental safety is highly desirable yet challenging. MOFs are a promising addition to the ongoing efforts, however, the relatively poor performance, chemical instability, and large-scale economic production of efficiency-proven pristine MOFs restrict their utility in real-life energy storage applications. Furthermore, hierarchical porosity for lucid mass diffusion, high-density lithiophilic sites are some of the structural parameters for improving the electrode performance. Herein, we have demonstrated the potential of economically scalable salicylaldehydate 3D-conjugated-MOF (Fe-Tp) as a high-performance anode in Li-ion batteries: the anode-specific capacity achieved up to 1447 mA h g-1 at 0.1 A g-1 and 89% of cyclic stability after 500 cycles at 1.0 A g-1.for pristine MOF. More importantly, incorporating 10% Fe-Tp doping in commercial graphite (MOFite) significantly enhanced lithium storage, doubling capacitance after 400 cycles. It signifies the potential practical utility of Fe-Tp as a performance booster for commercial anode material.

8.
Article in English | MEDLINE | ID: mdl-39093917

ABSTRACT

In this study, a nonflammable all-fluorinated electrolyte for lithium-ion cells with a Li(Ni0.8Mn0.1Co0.1)O2 cathode is investigated under high voltages. This electrolyte, named FT46, consists of fluoroethylene carbonate (FEC) and bis(2,2,2-trifluoroethyl) carbonate (TFEC) in a mass ratio of 4:6. Compared to a commercially available electrolyte and several other fluorinated electrolytes, cells containing FT46 demonstrate significantly better cycling performances under high voltage (3.0-4.5 V). This result may be ascribed to the generation of a stable, smooth, and thin passivation layer and the improved solvation structure formed by FT46. The LiF-rich passivation layer strengthens the electrode/electrolyte interface, inhibits the degradation of the electrode, and suppresses side reactions between the electrodes and electrolytes under high voltage. The solvation structure formed by FT46 is derived from anions, enabling an enhanced Li+ migration rate and inhibiting lithium plating generation. Additionally, due to the nonflammability of the electrolyte and the stable passivation layers, FT46 cells also demonstrate promising safety characteristics when exposed to typical abusive conditions, such as thermal abuse, mechanical abuse, and electrical abuse.

9.
Ecotoxicol Environ Saf ; 283: 116813, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094456

ABSTRACT

The development of renewable and low-carbon energy sources means that strategic elements such as lithium (Li) are increasingly being used. The data available on the effects of Li on aquatic organisms are relatively scarce. The copepod Eurytemora affinis, widely distributed in the brackish estuarine waters of the northern hemisphere, is a species of choice in ecotoxicology but in fact constitutes a cryptic species complex, composed of at least six cryptic species. Cryptic diversity can lead to misinterpretation and alter the reproducibility of routine ecotoxicological tests. In the present study, two cryptic species of the E. affinis complex from the Seine (European clade) and the St. Lawrence (North-Atlantic clade) estuaries were used to assess Li toxicity and to compare their differential sensitivity. Larvae were exposed to different concentrations of Li (0.4, 4.39, 35.36 and 80.83 mg L-1) under semi-static conditions for 96 h. Larval development stages were determined and log-logistic functions were fitted to evaluate mortality (LC50) and growth (EC50) parameters. After 96 h of exposure, the results showed that the European and North-Atlantic clades had LC50 values of 55.33 and 67.81 mg L-1 and EC50 values of 28.94 and 41.45 mg L-1, respectively. A moderate difference in sensitivity to Li between the European and North-Atlantic clades of the E. affinis complex was observed. Thus, the cryptic species diversity should be considered using E. affinis to avoid bias in the interpretation of the data. Despite environmental concentrations of Li are expected to increase over the next years, EC50 and LC50 found for E. affinis cryptic species are largely higher than Li environmental concentrations to provoke extreme effects.

10.
Sci Total Environ ; : 175056, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094637

ABSTRACT

Coal fly ash has gained much attention as a potential alternative source for extracting critical metals such as Li, Ga, Nb, and lanthanides and yttrium (REY). This study investigates their distribution characteristics and modes of occurrence in alumina-rich fly ashes from the Togtoh Power Plant in Inner Mongolia, using various analytical methods. The objective was to provide a reference for the pre-enrichment of critical metals in fly ash. Lithium is primarily present in the glass phase, and its concentration is extremely low in the crystalline phases. Lithium is mainly concentrated in "pure" aluminosilicate glass, and is present but at a low level in Ca-rich aluminosilicate glass. Gallium is primarily present in the glass phase and in corundum, while Nb mainly exists in submicron zircon particles surrounded by Si-Al-Ca glass. Lanthanides and yttrium primarily occur in the glass phase and in crystalline phases, including an intermediate phase composed of the three end-member minerals of the gorceixite-crandallite-florencite series, as well as in monazite, crystalline forms of iron oxides and REY oxides. The Li concentrations in the Al-rich fly ashes range from 562 to 894 µg/g for Li2O, from 43.9 to 81.9 µg/g for Ga, from 58.7 to 70.6 µg/g for Nb2O5, and from 258 to 450 µg/g for REY oxides, respectively, indicating their substantial potential for resource recovery. Especially, the 2nd row fly ash has the highest contents of these metals, allowing for direct extraction without the necessity for complex pre-processing. Physical separation can further enrich Li, Ga, Nb, and REY in the fly ash. In particular, particle size separation enriches these elements in the <20 µm size range and magnetic separation enriches Li, Ga, Nb, and REY (except Ce) in the non-magnetic fraction. However, Ce was significantly enriched in the magnetic fraction compared to the original fly ash.

11.
Article in English | MEDLINE | ID: mdl-39096308

ABSTRACT

SiOx anode materials are among the most promising candidates for next-generation high-energy-density lithium-ion batteries (LIBs). However, their commercial application is hindered by poor conductivity, low initial Coulombic efficiency (ICE), and an unstable solid electrolyte interface. Developing cost-effective SiOx anodes with high electrochemical performance is crucial for advanced LIBs. To tackle these issues, this study utilized APTES as a silicon source and carbon nanotubes (CNTs) as additives to prepare a T-SiOx/C/CNTs composite material with N doping and in situ carbon coating using a "molecular assembly combined with controlled pyrolysis" strategy under mild conditions. The in situ carbon coating, formed by the pyrolysis of organic groups on the molecular precursor, effectively protects the inner SiOx active material. The introduced CNTs enhance electron migration and improve the rigidity of the carbon coating layer. The prelithiated T-SiOx@C/CNTs electrode achieves an ICE of 91.6%, with a specific capacity of 622 mAh g-1 after 400 cycles at 1 A g-1 and 475.8 mAh g-1 after 800 cycles. Full cell tests with commercial NCM811 cathodes further demonstrate the potential of T-SiOx@C/CNTs as a highly promising anode material. This work provides some insights into the rational design of advanced anode materials for LIBs, paving the way for their future development and application.

12.
J Hazard Mater ; 477: 135400, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096634

ABSTRACT

Resource recovery of valuable metals from spent lithium batteries is an inevitable trend for sustainable development. In this study, external regulation was used to enhance the tolerance and stability of strains in the leaching of spent lithium batteries to radically improve the bioleaching efficiency. The leaching of Li, Ni, Co and Mn increased to 100 %, 85.06 %, 74.25 % and 69.44 % respectively after targeted cultivation with HA as compared to the undomesticated strain. In the process of microbial leaching of spent lithium batteries, the metabolites in the Ⅰ, Ⅳ, and Ⅴ regions of the metabolism of the undomesticated bacterial colony had a positive correlation to the dissolution of spent lithium batteries. The metabolites of Ⅰ, Ⅱ, and Ⅴ regions were directly affected by the HA domesticated flora on the dissolution of spent lithium batteries. The excess metabolism of protein substances can significantly promote the reduction of Ni, Co, Mn leaching, and at the same time in the role of a large number of humic substances complexed the toxic metal ions in the system, to ensure the activity of the bacterial colony. It can be seen that the bacteria were domesticated by humic acid, which promoted the bacteria's own metabolism, and the super-metabolised EPS promoted the solubilisation of spent lithium batteries.

13.
Chemistry ; : e202402300, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049101

ABSTRACT

Silicon oxides (SiOx) have received extensive attention as an promising anode candidate for next-generation lithium-ion batteries (LIBs). However, their commerical applications have been seriously hindered by low conductivity, large volume expansion and unstable soild-electrolyte interface (SEI) layer, which result in low intial coulombic efficiency, poor rate performance and short cycling lifepan. In this work, we demonstrate a simple way to prepare a series of SiOx materials with lithium fluoride (LiF) modified by hydrothermal method and carbothermal modification. When the mass ratio of SiOx and LiF equals 1:0.15, the long-term cycling capacity retention can be greatly improve form 30.2% to 76.7% after 200 cycles. The result is primarily because the enhancement of electrons and Li+-ions transport and the stability of SEI layer due to LiF addition. However, excess LiF addition can hinder the diffusion of Li+-ions. This study presents the great potential of LiF modified on SiOx anode materials for LIBs.

14.
Adv Sci (Weinh) ; : e2405135, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049722

ABSTRACT

Lithium-ion batteries with transition metal sulfides (TMSs) anodes promise a high capacity, abundant resources, and environmental friendliness, yet they suffer from fast degradation and low Coulombic efficiency. Here, a heterostructured bimetallic TMS anode is fabricated by in situ encapsulating SnS2/MoS2 nanoparticles within an amphiphilic hollow double-graphene sheet (DGS). The hierarchically porous DGS consists of inner hydrophilic graphene and outer hydrophobic graphene, which can accelerate electron/ion migration and strongly hold the integrity of alloy microparticles during expansion and/or shrinkage. Moreover, catalytic Mo converted from lithiated MoS2 can promote the reaction kinetics and suppress heterointerface passivation by forming a building-in-electric field, thereby enhancing the reversible conversion of Sn to SnS2. Consequently, the SnS2/MoS2/DGS anode with high gravimetric and high volumetric capacities achieves 200 cycles with a high initial Coulombic efficiency of >90%, as well as excellent low-temperature performance. When the commercial Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode is paired with the prelithiated SnS2/MoS2/DGS anode, the full cells deliver high gravimetric and volumetric energy densities of 577 Wh kg-1 and 853 Wh L-1, respectively. This work highlights the significance of integrating spatial confinement and atomic heterointerface engineering to solve the shortcomings of conversion-/alloying typed TMS-based anodes to construct outstanding high-energy LIBs.

15.
Chemistry ; : e202401442, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052252

ABSTRACT

Commercial lithium-ion batteries are gradually approaching their theoretical values (200-250 Wh kg-1), which cannot meet the fast-growing energy storage demands. Lithium-sulfur (Li-S) batteries are anticipated to supersede lithium-ion batteries as the next-generation energy storage system owing to their high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). Nonetheless, Li-S batteries encounter several challenges, including the inadequate conductivity of sulfur and lithium sulfide, sulfur's volume expansion, and the shuttle effect of lithium polysulfides, all of which significantly impact the practical utilization of Li-S batteries. Electrospun carbon-based nanofibers can simultaneously resolve these issues with their economical preparation, distinctive nanostructure, and exceptional flexibility. This review presents the most recent research findings on electrospun carbon-based nanofibers materials serving as sulfur hosts and interlayer components in Li-S batteries. We analyzed the impact of the material's structural design on the performance of Li-S batteries and the relative underlying mechanism. Finally, the current challenges and issues faced by carbon-based nanofibers composites in the application of Li-S batteries are summarized, and the future development trajectory are outlined.

16.
Adv Sci (Weinh) ; : e2404328, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052873

ABSTRACT

Established in 1962, lithium-sulfur (Li-S) batteries boast a longer history than commonly utilized lithium-ion batteries counterparts such as LiCoO2 (LCO) and LiFePO4 (LFP) series, yet they have been slow to achieve commercialization. This delay, significantly impacting loading capacity and cycle life, stems from the long-criticized low conductivity of the cathode and its byproducts, alongside challenges related to the shuttle effect, and volume expansion. Strategies to improve the electrochemical performance of Li-S batteries involve improving the conductivity of the sulfur cathode, employing an adamantane framework as the sulfur host, and incorporating catalysts to promote the transformation of lithium polysulfides (LiPSs). 2D MXene and its derived materials can achieve almost all of the above functions due to their numerous active sites, external groups, and ease of synthesis and modification. This review comprehensively summarizes the functionalization advantages of MXene-based materials in Li-S batteries, including high-speed ionic conduction, structural diversity, shuttle effect inhibition, dendrite suppression, and catalytic activity from fundamental principles to practical applications. The classification of usage methods is also discussed. Finally, leveraging the research progress of MXene, the potential and prospects for its novel application in the Li-S field are proposed.

17.
J Colloid Interface Sci ; 676: 551-559, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39053403

ABSTRACT

The uncontrollable growth of Li dendrites and severe interfacial parasitic reactions on the Li anode are the primary obstacles to the practical application of lithium (Li) metal batteries. Effective artificial solid electrolyte interphase is capable of regulating uniform Li deposition and isolateing Li from electrolyte, thereby eliminating parasitic reactions. Herein, we rationally design a uniform LiF-dominated solid electrolyte interphase through an in-situ reaction between CaF2 nanoparticles and the Li anode, which allows dendrite-free Li deposition and restrains interfacial deterioration. Accordingly, the protective Li electrode demonstrated exceptional stability, sustaining over 6000 h at a current density of 2 mA cm-2 in symmetric cells and attaining over 1000 cycles with a low capacity decay rate of 0.015 % per cycle in coupling with LiFePO4 cathodes.

18.
J Colloid Interface Sci ; 676: 603-612, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39053408

ABSTRACT

The widespread application of Li4Ti5O12 (LTO) anode in lithium-ion batteries has been hindered by its relatively low energy density. In this study, we investigated the capacity enhancement mechanism of LTO anode through the incorporation of Na+ cations in an Li+-based electrolyte (dual-cation electrolyte). LTO thin film electrodes were prepared as conductive additive-free and binder-free model electrodes. Electrochemical performance assessments revealed that the dual-cation electrolyte boosts the reversible capacity of the LTO thin film electrode, attributable to the additional pseudocapacitance and intercalation of Na+ into the LTO lattice. Operando Raman spectroscopy validated the insertion of Li+/Na+ cations into the LTO thin film electrode, and the cation migration kinetics were confirmed by ab initio molecular dynamic (AIMD) simulation and electrochemical impedance spectroscopy, which revealed that the incorporation of Na+ reduces the activation energy of cation diffusion within the LTO lattice and improves the rate performance of LTO thin film electrodes in the dual-cation electrolyte. Furthermore, the interfacial charge transfer resistance in the dual-cation electrolyte, associated with ion de-solvation processes and traversal of the cations in the solid-electrolyte interphase (SEI) layer, are evaluated using the distribution of relaxation time, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Our approach of performance enhancement using dual-cation electrolytes can be extrapolated to other battery electrodes with sodium/lithium storage capabilities, presenting a novel avenue for the performance enhancement of lithium/sodium-ion batteries.

19.
Front Pharmacol ; 15: 1408462, 2024.
Article in English | MEDLINE | ID: mdl-39055498

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. Despite advances in understanding the pathophysiological mechanisms of AD, effective treatments remain scarce. Lithium salts, recognized as mood stabilizers in bipolar disorder, have been extensively studied for their neuroprotective effects. Several studies indicate that lithium may be a disease-modifying agent in the treatment of AD. Lithium's neuroprotective properties in AD by acting on multiple neuropathological targets, such as reducing amyloid deposition and tau phosphorylation, enhancing autophagy, neurogenesis, and synaptic plasticity, regulating cholinergic and glucose metabolism, inhibiting neuroinflammation, oxidative stress, and apoptosis, while preserving mitochondrial function. Clinical trials have demonstrated that lithium therapy can improve cognitive function in patients with AD. In particular, meta-analyses have shown that lithium may be a more effective and safer treatment than the recently FDA-approved aducanumab for improving cognitive function in patients with AD. The affordability and therapeutic efficacy of lithium have prompted a reassessment of its use. However, the use of lithium may lead to potential side effects and safety issues, which may limit its clinical application. Currently, several new lithium formulations are undergoing clinical trials to improve safety and efficacy. This review focuses on lithium's mechanism of action in treating AD, highlighting the latest advances in preclinical studies and clinical trials. It also explores the side effects of lithium therapy and coping strategies, offering a potential therapeutic strategy for patients with AD.

20.
Angew Chem Int Ed Engl ; : e202411224, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058557

ABSTRACT

Deep eutectic electrolytes (DEEs) are regarded as one of the next-generation electrolytes to promote the development of lithium metal batteries (LMBs) due to their unparalleled advantages compared to both liquid electrolytes and solid electrolytes. However, its application in LMBs is limited by electrode interface compatibility. Here, we introduce a novel solid dimethylmalononitrile (DMMN)-based DEE induced by N coordination to dissociate LiTFSI. We confirmed that the DMMN molecule can promote the dissociation of LiTFSI by the interaction between the N atom and Li+, and form the hydrogen bond with TFSI- anion, which can promote the dissociation of LiTFSI to form DEE. More importantly, due to the absence of active α-hydrogen, DMMN exhibits greatly enhanced reduction stability with Li metal, resulting in favorable electrode/electrolyte interface compatibility. Polymer electrolytes based on this DEE exhibit high ionic conductivity (0.67 mS cm-1 at 25 ℃), high oxidation voltage (5.0 V vs. Li+/Li), favorable interfacial stability and nonflammability. Li‖LFP and Li‖NCM811 full batteries utilizing this DEE polymer electrolyte exhibit excellent long-term cycling stability and excellent rate performance at high rates. Therefore, the new DMMN-based DEE overcomes the limitations of traditional electrolytes in electrode interface compatibility and opens new possibilities for improving the performance of LMBs.

SELECTION OF CITATIONS
SEARCH DETAIL