Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.076
Filter
1.
J Diet Suppl ; : 1-15, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135478

ABSTRACT

Carotenoids are especially hydrophobic and dissolve poorly in water. Encapsulation is used to increase their solubility in water-based food products. However, it is not yet known whether encapsulation with a combination of lecithin and medium-chain triglycerides improves carotenoid bioaccessibility and intestinal cell uptake. The relative bioaccessibility and Caco-2 cell uptake of two water-soluble carotenoid (i.e. lutein and astaxanthin) dispersions in a liquid form (VitaSperse®) and a powdered form (VitaDry®) were compared to the carotenoid ingredient alone. An in vitro digestion model was used to assess bioaccessibility, measuring the micellarized fraction postdigestion. The micelle fraction was incubated with Caco-2 cells to assess intestinal uptake of carotenoids. Encapsulation (by either VitaDry® or Vitasperse®) increased total astaxanthin bioaccessibility 2-2.4× and cell uptake by ∼2× relative to control. Encapsulation also increased total lutein bioaccessibility by 3-5× and cell uptake 2.3× relative to control. There was no significant difference between VitaDry® and VitaSperse® products in regards to Caco-2 cell uptake. Increased bioaccessibility largely drove increased carotenoid cell uptake from the encapsulated formulations. These results suggest further study is warranted to determine if this encapsulation approach increases carotenoid bioavailability in human studies.

2.
Ophthalmol Sci ; 4(5): 100537, 2024.
Article in English | MEDLINE | ID: mdl-39071916

ABSTRACT

Purpose: Lutein (L) and zeaxanthin (Z) are xanthophyll carotenoids that have been promoted to enhance maternal health and infant visual and neurodevelopment. In this study, we determined the effects of prenatal L and Z supplementation on systemic and ocular carotenoid status in the mother and her newborn infant (NCT03750968). This report focuses on the ocular effects of prenatal carotenoid supplementation. Design: A prospective randomized clinical trial with 47 subjects randomly assigned by 1:1 allocation to receive standard-of-care prenatal vitamins along with 10 mg L and 2 mg Z softgel (Carotenoid Group) or standard-of-care prenatal vitamins with a placebo softgel (Control Group) starting in the first trimester. Subjects: We enrolled low-risk pregnancy subjects aged ≥18 years from the obstetrics and gynecology clinic of the University of Utah Hospital. Methods: Maternal macular, skin, and serum carotenoid concentrations were measured using autofluorescence imaging, resonance Raman spectroscopy, and high-performance liquid chromatography, respectively. Infants' ocular carotenoids and retinal architecture were measured by blue light reflectance imaging and spectral-domain OCT, respectively. Main Outcome Measures: Changes in maternal and infant macular pigment, skin, and serum carotenoid status over the study period. Differences in infants' retinal maturity indicators between the 2 study groups. Results: Following supplementation, there was a statistically significant increase in maternal macular pigment optical volume (P < 0.001) in the Carotenoid Group relative to the Control Group at all study time points, and there was no detectable maternal ocular carotenoid depletion. Infant skin and serum carotenoids increased significantly in the Carotenoid Group compared with the Control Group. As exploratory endpoints, infants in the Carotenoid Group had a 20% increase in macular pigment optical density (P = 0.242) and more mature foveal parameters compared with those in the Control Group. Conclusion: Prenatal carotenoid supplementation significantly increased maternal and infant systemic carotenoids and caused a pattern of increased infant ocular carotenoid status, which may benefit both mothers and their infants' ocular development and function. This study provides important data to design and power a future multicenter study of prenatal carotenoid supplementation in higher-risk pregnancies. Financial Disclosures: The author(s) have no proprietary or commercial interest in any materials discussed in this article.

3.
Mar Drugs ; 22(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39057415

ABSTRACT

Chromochloris zofingiensis, a unicellular green alga, is a potential source of natural carotenoids. In this study, the mutant LUT-4 was acquired from the chemical mutagenesis pool of C. zofingiensis strain. The biomass yield and lutein content of LUT-4 reached 9.23 g·L-1, and 0.209% of dry weight (DW) on Day 3, which was 49.4%, and 33% higher than that of wild-type (WT), respectively. The biomass yields of LUT-4 under 100, 300, and 500 µmol/m2/s reached 8.4 g·L-1, 7.75 g·L-1, and 6.6 g·L-1, which was 10.4%, 21%, and 29.6% lower compared with the control, respectively. Under mixotrophic conditions, the lutein yields were significantly higher than that obtained in the control. The light intensity of 300 µmol/m2/s was optimal for lutein biosynthesis and the content of lutein reached 0.294% of DW on Day 3, which was 40.7% more than that of the control. When LUT-4 was grown under 300 µmol/m2/s, a significant increase in expression of genes implicated in lutein biosynthesis, including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene epsilon cyclase (LCYe) was observed. The changes in biochemical composition, Ace-CoA, pyruvate, isopentenyl pyrophosphate (IPP), and geranylgeranyl diphosphate (GGPP) contents during lutein biosynthesis were caused by utilization of organic carbon. It was thereby concluded that 300 µmol/m2/s was the optimal culture light intensity for the mutant LUT-4 to synthesize lutein. The results would be helpful for the large-scale production of lutein.


Subject(s)
Light , Lutein , Lutein/biosynthesis , Chlorophyta/genetics , Chlorophyta/metabolism , Mutation , Biomass , Carotenoids/metabolism
4.
Polymers (Basel) ; 16(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065299

ABSTRACT

Novel self-assembled aggregates of stearic acid (SA)-modified burdock polysaccharide (BP) for loading lutein were constructed, and the release and absorption properties of lutein in the aggregates in simulated gastrointestinal fluid were investigated. Three different degrees of substitution (DS) of SA-BPs were used to embed lutein, resulting in the encapsulation efficiency exceeding 90%. The aggregates were uniformly spherical, with a particle size range of 227-341 nm. XRD analysis revealed that lutein was present in a non-crystalline state within the aggregates. FT-IR and FS analysis demonstrated that lutein was located in the hydrophobic domains of SA-BP. The highest bioavailability of lutein in these aggregates reached 4.36 times that in the unmodified samples. These aggregates were able to remain stable in gastric juice and enhance the release rate of lutein in intestinal fluid. The transport of lutein-loaded SA-BP aggregates in Caco-2 cells competed with P-glycoprotein inhibitors, mainly promoting the transmembrane absorption of lutein through caveolae (or lipid raft)-related and clathrin-dependent endocytosis pathways. The above results suggest that SA-BP aggregates have the potential to be promising carriers for the efficient delivery of hydrophobic lutein.

5.
Foods ; 13(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39063387

ABSTRACT

Plant proteins have gained significant attention over animal proteins due to their low carbon footprint, balanced nutrition, and high sustainability. These attributes make plant protein nanocarriers promising for applications in drug delivery, nutraceuticals, functional foods, and other areas. Zein, a major by-product of corn starch processing, is inexpensive and widely available. Its unique self-assembly characteristics have led to its extensive use in various food and drug systems. Zein's functional tunability allows for excellent performance in loading and transporting bioactive substances. Lutein offers numerous bioactive functions, such as antioxidant and vision protection, but suffers from poor chemical stability and low bioavailability. Nano-embedding technology can construct various zein-loaded lutein nanodelivery systems to address these issues. This review provides an overview of recent advances in the construction of zein-loaded lutein nanosystems. It discusses the fundamental properties of these systems; systematically introduces preparation techniques, structural characterization, and functional properties; and analyzes and predicts the target-controlled release and bioaccessibility of zein-loaded lutein nanosystems. The interactions and synergistic effects between Zein and lutein in the nanocomplexes are examined to elucidate the formation mechanism and conformational relationship of zein-lutein nanoparticles. The physical and chemical properties of Zein are closely related to the molecular structure. Zein and its modified products can encapsulate and protect lutein through various methods, creating more stable and efficient zein-loaded lutein nanosystems. Additionally, embedding lutein in Zein and its derivatives enhances lutein's digestive stability, solubility, antioxidant properties, and overall bioavailability.

6.
Foods ; 13(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998535

ABSTRACT

Lutein is an oxygenated fat-soluble carotenoid and a functional compound with proven health benefits for the human body. Nevertheless, the poor water solubility and low oral bioavailability of lutein greatly limit its application. To address this, we developed an effective approach to enhance the water solubility of lutein through co-amorphous formulation. Specifically, the lutein-sucralose co-amorphous mixture was prepared at a molar ratio of 1:1 using ethanol and water as solvents by employing the solvent evaporation method, followed by solid-state characterization and dissolution testing conducted to assess the properties of the formulation. The X-ray diffraction pattern with an amorphous halo and the differential scanning calorimetry thermogram with no sharp melting peaks confirmed the formation of a binary co-amorphous system. Changes in peak shape, position, and intensity observed in the Fourier transform infrared spectroscopy spectrum revealed intermolecular interactions between lutein and sucralose molecules, while molecular dynamics simulations identified interaction sites between their hydroxyl groups. Additionally, dissolution testing demonstrated better dissolution performance of lutein in the co-amorphous form compared to pure lutein and physical mixture counterparts. Our findings present a novel strategy for improving the water solubility of lutein to make better use of it.

7.
Front Pharmacol ; 15: 1406784, 2024.
Article in English | MEDLINE | ID: mdl-38978979

ABSTRACT

The global prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is increasing, now affecting 25%-30% of the population worldwide. MASLD, characterized by hepatic steatosis, results from an imbalance in lipid metabolism, leading to oxidative stress, lipoperoxidation, and inflammation. The activation of autophagy, particularly lipophagy, alleviates hepatic steatosis by regulating intracellular lipid levels. Lutein, a carotenoid with antioxidant and anti-inflammatory properties, protects against liver damage, and individuals who consume high amounts of lutein have a lower risk of developing MASLD. Evidence suggests that lutein could modulate autophagy-related signaling pathways, such as the transcription factor EB (TFEB). TFEB plays a crucial role in regulating lipid homeostasis by linking autophagy to energy metabolism at the transcriptional level, making TFEB a potential target against MASLD. STARD3, a transmembrane protein that binds and transports cholesterol and sphingosine from lysosomes to the endoplasmic reticulum and mitochondria, has been shown to transport and bind lutein with high affinity. This protein may play a crucial role in the uptake and transport of lutein in the liver, contributing to the decrease in hepatic steatosis and the regulation of oxidative stress and inflammation. This review summarizes current knowledge on the role of lutein in lipophagy, the pathways it is involved in, its relationship with STARD3, and its potential as a pharmacological strategy to treat hepatic steatosis.

8.
Int J Biol Macromol ; 275(Pt 2): 133608, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960249

ABSTRACT

Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.


Subject(s)
Emulsions , Juglans , Lutein , Molecular Docking Simulation , Plant Proteins , Juglans/chemistry , Emulsions/chemistry , Lutein/chemistry , Plant Proteins/chemistry , Biological Availability , Digestion , Drug Delivery Systems
9.
Curr Dev Nutr ; 8(6): 103789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974349

ABSTRACT

Background: Lower density of carotenoids lutein and zeaxanthin (L/Z) in the macula (i.e., macular pigment) has been linked to greater risk for age-related eye disease. Objectives: We evaluated whether macular pigment optical density (MPOD) was associated with manifest primary open-angle glaucoma (POAG) among older women in the Carotenoids in Age-Related Eye Disease Study 2 (CAREDS2). Methods: MPOD was measured with customized heterochromatic flicker photometry in women who attended CAREDS2 (2016-2019) and CAREDS1 (2001-2004) study visits. Manifest POAG at CAREDS2 was assessed using visual fields, disc photos, optical coherence tomography, and medical records. Age-adjusted linear and logistic regression models were used to investigate the cross-sectional association between POAG and MPOD at CAREDS2, and MPOD measured 15 years earlier at CAREDS1. Results: Among 426 CAREDS2 participants (mean age: 80 y; range: 69-98 y), 26 eyes with manifest POAG from 26 participants were identified. Glaucomatous eyes had 25% lower MPOD compared to nonglaucomatous eyes [mean (SE): 0.40 (0.05) compared with 0.53 (0.01)] optical density units (ODU), respectively (P = 0.01). Compared with MPOD quartile 1, odds for POAG were lower for women in quartiles 2-4 (P-trend = 0.01). After excluding eyes with age-related macular degeneration, associations were similar but not statistically significant (P-trend = 0.16). Results were similar for MPOD measured at CAREDS1. Conclusions: Our results add to growing evidence that low MPOD may be a novel glaucoma risk factor and support further studies to assess the utility of dietary interventions for glaucoma prevention.

10.
Front Ophthalmol (Lausanne) ; 4: 1362113, 2024.
Article in English | MEDLINE | ID: mdl-38984118

ABSTRACT

Introduction: Dry eye disease (DED) is multifactorial and characterized by a loss of tear film homeostasis that causes a cycle of tear film instability, tear hyperosmolarity, and inflammation. While artificial tears are the traditional mainstay of treatment, addressing the underlying pathophysiology could relieve symptoms and prevent progression. Increasing evidence indicates a role for oral nutritional supplementation in multiple ophthalmic diseases, including DED. Lutein, zeaxanthin, curcumin, and vitamin D3 have demonstrated protective and anti-inflammatory properties in ocular models. This prospective, randomized, double-blind, parallel, placebo-controlled study evaluated the efficacy and safety of a proprietary blend of lutein, zeaxanthin isomers, curcumin, and vitamin D3 (LCD) as a daily supplement in adult participants with DED. Methods: Participants were randomized to receive one LCD supplement capsule (lutein 20 mg, zeaxanthin isomers 4 mg, curcumin 200 mg curcuminoids, and vitamin D3 600 IU) or placebo per day for 8 weeks (LCD, n=77; placebo, n=78). Primary outcomes were changes in tear volume (Schirmer's test) and ocular symptoms (Ocular Surface Disease Index [OSDI]). Results: The study met its primary endpoints: the LCD group demonstrated significantly better Schirmer's test scores and improvement in overall OSDI score, versus placebo, at Day 56 (p<0.001 for both). Scores for total OSDI, and symptoms and vision domains, significantly improved by Day 14 for LCD versus placebo, (p<0.05 for all) and were maintained to Day 56 (p<0.001). In addition, the LCD group demonstrated significantly improved tear film break-up time (TBUT) and tear film osmolarity, versus placebo, by Day 56 (p<0.001), along with significant improvements in corneal and conjunctival staining (p<0.001 for both), and inflammation (matrix metalloproteinase-9; p<0.001 for each eye). Total Standard Patient Evaluation of Eye Dryness (SPEED) score, and scores for the frequency and severity domains, were significantly improved by Day 14 for LCD versus placebo (p<0.05 for all) and maintained to Day 56 (p<0.001). There was no difference between groups for artificial tear usage. The supplement was well-tolerated. Discussion: Once-daily LCD supplementation significantly improved tear production, stability and quality, reduced ocular surface damage and inflammation, and improved participants' symptoms. LCD supplementation could offer a useful adjunct to artificial tears for patients with DED (NCT05481450).

11.
Int J Biol Macromol ; 274(Pt 2): 133389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925203

ABSTRACT

Collagen fibrils serve as the building blocks of the extracellular matrix, providing a resilient and structural framework for tissues. However, the bundling of collagen fibrils is of paramount importance in maintaining the structural integrity and functionality of various tissues in the human body. In this scenario, there is limited exploration of molecules that promote the bundling of collagen fibrils. Investigating the interactions of well-known carotenoids, commonly associated with ocular health, particularly in the retina, with collagen presents a novel and significant area of study. Here, we studied the influence of lutein, a well-known carotenoid present in many plant tissues and has several biological properties, on the structure, thermal stability, self-assembly, and fibrillation of collagen. Fibrillation kinetics and electron microscopic analyses indicated that lutein did not interfere with fibrillation process of collagen, whereas it enhances the lateral fusion of collagen fibrils leading to the formation of compact bundles of thick fibrils under physiological conditions. The hydrophobic and hydrogen bonding interactions between lutein and collagen fibrils are most likely the cause of the bundling of the fibrils. This study establishes the first investigation of collagen-carotenoid interactions, showcasing the unique property of lutein in bundling collagen fibrils, which may find potential application in tissue engineering.


Subject(s)
Lutein , Lutein/chemistry , Humans , Collagen/chemistry , Collagen/metabolism , Animals , Kinetics , Eye/metabolism , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions
12.
Int J Biol Macromol ; 273(Pt 1): 133010, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852735

ABSTRACT

Lipids are increasingly being incorporated into delivery systems due to their ability to facilitate intestinal absorption of lipid-soluble nutrients through molecular solubilization and micellization. In this work, self-assembled complexes of ovalbumin (OVA) and nine dietary fatty acids (FAs) were constructed to improve the processability and absorbability of lutein (LUT). Results showed that all FAs could form stable hydrophilic particles with OVA under the optimized ultrasound-coupled pH conditions. Fourier infrared spectroscopy and transmission electron microscopy analysis showed that these binary complexes effectively encapsulated LUT with an encapsulation rate > 90.0 %. Stability experiments showed that these complexes protected LUT well, which could improve thermal stability and in vitro digestive stability by 1.66-3.58-fold and 1.27-2.74-fold, respectively. Besides, the bioaccessibility of LUT was also enhanced by 7.16-24.99-fold. The chain length and saturation of FAs affected the stability and absorption of LUT. Therefore, these results provided some reference for the selection of FAs for efficient delivery of lipid-soluble nutrients.


Subject(s)
Fatty Acids , Lutein , Ovalbumin , Water , Lutein/chemistry , Fatty Acids/chemistry , Ovalbumin/chemistry , Water/chemistry , Digestion , Biological Availability , Solubility , Hydrogen-Ion Concentration , Temperature , Drug Stability , Hydrophobic and Hydrophilic Interactions
13.
J Agric Food Chem ; 72(26): 14701-14712, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38897610

ABSTRACT

Excessive hydrogen peroxide (H2O2) generated during retinal cell metabolic activity could lead to oxidative degeneration of retinal pigment epithelium (RPE) tissue, a specific pathological process implicated in various retinal diseases resulting in blindness, which can be mitigated by taking dietary antioxidants to prevent inflammation and impaired cellular dysfunction. This study tested the hypothesis that damages induced by oxidative stresses can be mitigated by lutein in a H2O2-challenged model, which was based on an ARPE-19 cell monolayer cultured on three-dimensional (3D)-printed fibrous scaffolds. Pretreating these models with lutein (0.5 µM) for 24 h can significantly lower the oxidative stress and maintain phagocytosis and barrier function. Moreover, lutein can modulate the NLRP3 inflammasome, leading to a ∼40% decrease in the pro-inflammatory cytokine (IL-1ß and IL-18) levels. Collectively, this study suggests that the 3D RPE model is an effective tool to examine the capability of lutein to modulate cellular functionalities and regulate NLRP3 inflammation.


Subject(s)
Hydrogen Peroxide , Inflammasomes , Lutein , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Retinal Pigment Epithelium , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/cytology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans , Inflammasomes/metabolism , Inflammasomes/drug effects , Hydrogen Peroxide/metabolism , Lutein/pharmacology , Oxidative Stress/drug effects , Cell Line , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Interleukin-18/metabolism , Models, Biological
14.
AAPS PharmSciTech ; 25(5): 135, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862657

ABSTRACT

Lutein (Lut) is a recognized nutritional supplement known for its antioxidative and anti-inflammatory properties, crucial in mitigating ocular disease. However, enhancements to Lut stability and solubility remain challenges to be addressed in the healthcare industry. Herein, we fabricated and evaluated a food-grade highly porous ß-cyclodextrin metal-organic framework (ß-CD-MOF) for its ability to encapsulate Lut. Lut stability considerably improved when loaded into ß-CD-MOF to form a Lut@ß-CD-MOF complex, which exhibited better stability than Lut loaded into the γ-cyclodextrin metal-organic framework (Lut@γ-CD-MOF), Lut@ß-CD, and commercial product (Blackmores™) at 40°C, 60°C, and 70°C, respectively. The solubility of Lut@ß-CD-MOF in water increased by 26.8-fold compared to raw Lut at 37°C. Lut@ß-CD-MOF exhibited greater hydrophilicity, as determined by measuring the water contact angle. Molecular docking and other characterizations of Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that Lut was successfully encapsulated in the chamber formed by the three cyclodextrins in ß-CD-MOF. Thermogravimetric analysis and Raman spectroscopy demonstrated that Lut distributed in the ß-CD-MOF cavity deeply improved Lut stability and solubility. In conclusion, our findings underscored the function of ß-CD-MOF in enhancing Lut stability and solubility for formulation applications.


Subject(s)
Lutein , Metal-Organic Frameworks , Solubility , beta-Cyclodextrins , Metal-Organic Frameworks/chemistry , beta-Cyclodextrins/chemistry , Lutein/chemistry , Drug Stability , X-Ray Diffraction/methods , Molecular Docking Simulation/methods , Spectroscopy, Fourier Transform Infrared/methods , Hydrophobic and Hydrophilic Interactions , Porosity
15.
J Wildl Dis ; 60(3): 634-646, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38741368

ABSTRACT

Pathogens have traditionally been studied in isolation within host systems; yet in natural settings they frequently coexist. This raises questions about the dynamics of co-infections and how host life-history traits might predict co-infection versus single infection. To address these questions, we investigated the presence of two parasites, a gut parasite (Isospora coccidians) and a blood parasite (Plasmodium spp.), in House Finches (Haemorhous mexicanus), a common passerine bird in North America. We then correlated these parasitic infections with various health and condition metrics, including hematological parameters, plasma carotenoids, lipid-soluble vitamins, blood glucose concentration, body condition, and prior disease history. Our study, based on 48 birds captured in Tempe, Arizona, US, in October 2021, revealed that co-infected birds exhibited elevated circulating lutein levels and a higher heterophil:lymphocyte ratio (H/L ratio) compared to those solely infected with coccidia Isospora spp. This suggests that co-infected birds experience heightened stress and may use lutein to bolster immunity against both pathogens, and that there are potentially toxic effects of lutein in co-infected birds compared to those infected solely with coccidia Isospora sp. Our findings underscore the synergistic impact of coparasitism, emphasizing the need for more co-infection studies to enhance our understanding of disease dynamics in nature, as well as its implications for wildlife health and conservation efforts.


Subject(s)
Bird Diseases , Coccidiosis , Coinfection , Finches , Isospora , Malaria, Avian , Plasmodium , Animals , Finches/parasitology , Coinfection/veterinary , Coinfection/parasitology , Coinfection/epidemiology , Malaria, Avian/epidemiology , Malaria, Avian/parasitology , Malaria, Avian/blood , Bird Diseases/parasitology , Bird Diseases/epidemiology , Bird Diseases/blood , Isospora/isolation & purification , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Plasmodium/isolation & purification , Isosporiasis/veterinary , Isosporiasis/epidemiology , Isosporiasis/parasitology , Arizona/epidemiology , Male , Female
16.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722384

ABSTRACT

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Subject(s)
Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
17.
Clin Interv Aging ; 19: 953-970, 2024.
Article in English | MEDLINE | ID: mdl-38807636

ABSTRACT

Purpose: This study investigated the effect of consumption of table eggs enriched with n-3 polyunsaturated fatty acids (n-3 PUFA), lutein, vitamin E and selenium on microvascular function, oxidative stress and inflammatory mediators in patients after acute coronary syndrome (ACS). Patients and Methods: In a prospective, randomized, interventional, double-blind clinical trial, ACS patients were assigned to either the Nutri4 (N=15, mean age: 57.2 ± 9.2 years), or the Control group (N=13; mean age 56.8 ± 9.6 years). The Nutri4 group consumed three enriched hen eggs daily for three weeks, providing approximately 1.785 mg of vitamin E, 0.330 mg of lutein, 0.054 mg of selenium and 438 mg of n-3 PUFAs. Biochemical parameters, including serum lipids, liver enzymes, nutrient concentrations, serum antioxidant enzyme activity (catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD)), and markers of oxidative stress (thiobarbituric acid reactive substances (TBARS) and ferric reducing ability (FRAP)), were assessed before and after the dietary interventions. Additionally, arterial blood pressure, heart rate, body composition, fluid status, anthropometric measurements, and skin microvascular blood flow responses to various stimuli (postocclusive reactive hyperemia (PORH), acetylcholine- (Ach ID), and sodium nitroprusside- (SNP ID)) were measured using laser Doppler flowmetry (LDF) throughout the study. Results: The intake of Nutri4 eggs led to a significant reduction in LDL cholesterol levels, while the levels of total cholesterol remained within the established reference values. Consuming Nutri4 eggs resulted in a 12.7% increase in serum vitamin E levels, an 8.6% increase in selenium levels, and demonstrated a favorable impact on microvascular reactivity, as evidenced by markedly improved PORH and ACh ID. Nutri4 eggs exerted a significant influence on the activity of GPx and SOD, with no observed changes in TBARS or FRAP values. Conclusion: The consumption of Nutri4 eggs positively influenced microvascular function in individuals with ACS, without eliciting adverse effects on oxidative stress.


Subject(s)
Acute Coronary Syndrome , Eggs , Fatty Acids, Omega-3 , Lutein , Oxidative Stress , Selenium , Vitamin E , Humans , Middle Aged , Oxidative Stress/drug effects , Female , Male , Double-Blind Method , Prospective Studies , Vitamin E/administration & dosage , Animals , Fatty Acids, Omega-3/administration & dosage , Aged , Lutein/administration & dosage , Selenium/administration & dosage , Antioxidants , Endothelium, Vascular/drug effects , Superoxide Dismutase/blood , Chickens , Food, Fortified
18.
Curr Res Food Sci ; 8: 100750, 2024.
Article in English | MEDLINE | ID: mdl-38764979

ABSTRACT

Lutein possesses various physiological activities but is susceptible to light degradation, thermal degradation, and oxidative degradation. As such, protecting the activity of lutein-based products using natural extracts has become a current research. In this study, lutein was protected by complexing inulin-type fructan (ITF), soybean protein isolate (SPI), and epicatechin (EC), and the protection mechanism of epicatechin-fructan glycosylated soybean protein isolate (EC-GSPI) toward lutein was elucidated comprehensively. The results showed that the addition of EC delayed the degradation of lutein. The results of light stability experiments showed that increased EC significantly enhanced the storage time of the GSPI-Lutein system from 4 to 13 days. Additionally, the effect of EC on glycosylated soybean 7S globulin (G7S) and glycosylated soybean 11S globulin (G11S) was assessed. The light stability of G11S-Lutein and G7S-Lutein after the addition of EC was from G11S > G7S → G7S > G11S. Furthermore, the proteins purified from SPI interacted differently with EC and ITF, with soybean 7S globulin (7S) mainly interacting with EC and soybean 11S globulin (11S) mainly interacting with ITF. EC-GSPI-Lutein exhibited a good protective effect, probably due to the occurrence of hygrothermal Maillard between ITF and 11S, providing a porous structure for lutein storage. At the same time, the binding of EC to 7S significantly enhanced the antioxidant property of the solution and the stability of the protein secondary structure, thereby prolonging the storage time of lutein.

19.
Metabolites ; 14(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786733

ABSTRACT

Circulating food metabolites could improve dietary assessments by complementing traditional methods. Here, biomarker candidates of food intake were identified in plasma samples from pregnancy (gestational week 29, N = 579), delivery (mothers, N = 532; infants, N = 348), and four months postpartum (mothers, N = 477; breastfed infants, N = 193) and associated to food intake assessed with semi-quantitative food frequency questionnaires. Families from the Swedish birth cohort Nutritional impact on Immunological maturation during Childhood in relation to the Environment (NICE) were included. Samples were analyzed using untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. Both exposure and outcome were standardized, and relationships were investigated using a linear regression analysis. The intake of fruits and berries and fruit juice were both positively related to proline betaine levels during pregnancy (fruits and berries, ß = 0.23, FDR < 0.001; fruit juice, ß = 0.27, FDR < 0.001), at delivery (fruit juice, infants: ß = 0.19, FDR = 0.028), and postpartum (fruits and berries, mothers: ß = 0.27, FDR < 0.001, infants: ß = 0.29, FDR < 0.001; fruit juice, mothers: ß = 0.37, FDR < 0.001). Lutein levels were positively related to vegetable intake during pregnancy (ß = 0.23, FDR < 0.001) and delivery (mothers: ß = 0.24, FDR < 0.001; newborns: ß = 0.18, FDR = 0.014) and CMPF with fatty fish intake postpartum (mothers: ß = 0.20, FDR < 0.001). No clear relationships were observed with the expected food sources of the remaining metabolites (acetylcarnitine, choline, indole-3-lactic acid, pipecolic acid). Our study suggests that plasma lutein could be useful as a more general food group intake biomarker for vegetables and fruits during pregnancy and delivery. Also, our results suggest the application of proline betaine as an intake biomarker of citrus fruit during gestation and lactation.

20.
Crit Rev Food Sci Nutr ; : 1-16, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795064

ABSTRACT

Macular carotenoids, which consist of lutein, zeaxanthin, and meso-zeaxanthin, are dietary antioxidants and macular pigments in the eyes, protecting the macula from light-induced oxidative stress. Lutein is also the main carotenoid in the infant brain and is involved in cognitive development. While a few articles reviewed the role of lutein in early health and development, the current review is the first that focuses on the outcomes of lutein supplementation, either provided to mothers or to infants. Additionally, lutein status and metabolism during pregnancy and lactation, factors that limit the potential application of lutein as a nutritional intervention, and solutions to overcome the limitation are also discussed. In brief, the lutein intake in pregnant and lactating women in the United States may not be optimal. Furthermore, preterm and formula-fed infants are known to have compromised lutein status compared to term and breast-fed infants, respectively. While lutein supplementation via both maternal and infant consumption improves lutein status in infants, the application of lutein as a nutritional intervention may be compromised by its low bioavailability. Various encapsulation techniques have been developed to enhance the delivery of lutein in adult animals or human but should be further evaluated in neonatal models.

SELECTION OF CITATIONS
SEARCH DETAIL