Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Life Sci ; 355: 123011, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39181316

ABSTRACT

HEADING AIMS: Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS: We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS: Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE: N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.


Subject(s)
Adenosine , Ferroptosis , Ferroptosis/genetics , Humans , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Iron/metabolism , Lipid Metabolism
2.
Front Immunol ; 14: 1279735, 2023.
Article in English | MEDLINE | ID: mdl-38094306

ABSTRACT

m6A is the most prevalent internal modification of eukaryotic mRNA, and plays a crucial role in tumorigenesis and various other biological processes. Lung cancer is a common primary malignant tumor of the lungs, which involves multiple factors in its occurrence and progression. Currently, only the demethylases FTO and ALKBH5 have been identified as associated with m6A modification. These demethylases play a crucial role in regulating the growth and invasion of lung cancer cells by removing methyl groups, thereby influencing stability and translation efficiency of mRNA. Furthermore, they participate in essential biological signaling pathways, making them potential targets for intervention in lung cancer treatment. Here we provides an overview of the involvement of m6A demethylase in lung cancer, as well as their potential application in the diagnosis, prognosis and treatment of the disease.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Prognosis , RNA, Messenger/genetics
3.
Biomed Pharmacother ; 165: 115192, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37487443

ABSTRACT

N6-methyladenosine (m6A) methylation modification is one of the most prevalent epigenetic modifications of eukaryotic RNA. m6A methylation is widely associated with many biological processes through the modification of RNA metabolism and is associated with multiple disease states. As a newly discovered regulatory cell death in recent years, ferroptosis is an iron-dependent cell death characterized by excessive lipid peroxidation. Emerging evidence supports that ferroptosis has a significant role in the progression of diverse diseases. Besides, the key regulators of ferroptosis exhibit aberrant m6A levels under different pathological conditions. However, the correlation between m6A-modified ferroptosis and multiple diseases has not been well elucidated. In this review, we summarized the functions of m6A in ferroptosis, which are associated with the initiation and progression of multiple diseases. Investigating the role of m6A in ferroptosis might both facilitate a better understanding of the pathogenesis of these diseases and provide new opportunities for targeted treatment.


Subject(s)
Adenine , Disease Progression , Ferroptosis , RNA Methylation , RNA , RNA/metabolism , Iron/metabolism , Lipid Peroxidation , Protein Binding , Humans
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-993127

ABSTRACT

N 6-methyladenosine (m 6A) is the most abundant epigenetic modification in eukaryotic messenger RNA (mRNA), which could be catalyzed by m 6A methyltransferase (Writers), recognized by methylation recognition enzymes (Readers), and removed by demethylase (Erasers). RNA splicing, translation, and stability could be modulated by m 6A methylation modification. The m 6A methylation modification is involved in the biological regulation of a variety of important functional genes in cellular activities. Importantly, abnormal m 6A modification affects the occurrence, development, metastasis and recurrence of tumors. Ionizing radiation can affect the level of m 6A and m 6A methylation-related enzymes. Recently, m 6A methylation is reported to regulate the efficacy of tumor radiotherapy by affecting DNA damage and radiosensitivity of tumor cells. In addition, ionizing radiation can also affect the level of m 6A modification in normal cells to regulate the progress of radiation-induced injuries. This review summarizes the research progress on the roles of m 6A methylation in tumor radiosensitivity and radiation-induced injuries, with the aim of providing novel strategies for the development of clinical tumor radiosensitizers and radioprotective agents.

5.
Cancers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36551544

ABSTRACT

BACKGROUND: Abnormal N6-methyladenosine (m6A) modification caused by m6A regulators is a common characteristic in various tumors. However, little is known about the role of m6A regulator AlkB homolog 5 (ALKBH5) in triple-negative breast cancer (TNBC). In this study, we analyzed the influence of ALKBH5 on the stemness of TNBC and the molecular mechanism using bioinformatics analysis and in vivo animal experiments. METHODS: RNA expression data and single-cell RNA sequencing (scRNA-seq) data were downloaded from the TCGA and GEO databases. Following intersection analysis, key genes involved in the TNBC cell stemness were determined, which was followed by functional enrichment analysis, PPI and survival analysis. Exosomes were extracted from bone marrow mesenchymal stem cells (BMSC-Exos) where ALKBH5 inhibition assay was conducted to verify their function in the biological characteristics of TNBC cells. RESULTS: Bioinformatics analysis revealed 45 key genes of ALKBH5 regulating TNBC cell stemness. In addition, UBE2C was predicted as a key downstream gene and p53 was predicted as a downstream signaling of ALKBH5. In vivo data confirmed that ALKBH5 upregulated UBE2C expression by regulating the m6A modification of UBE2C and reduced p53 expression, thus promoting the stemness, growth and metastasis of TNBC cells. BMSC-Exos suppressed the tumor stemness, growth and metastasis of TNBC cells and ALKBH5 shRNA-loaded BMSC-Exos showed a more significant suppressive role. CONCLUSION: Taken together, our findings indicated that ALKBH5 shRNA-loaded BMSC-Exos reduced TNBC cell stemness, growth and metastasis and define a promising strategy to treat TNBC.

6.
Front Genet ; 13: 908976, 2022.
Article in English | MEDLINE | ID: mdl-35836571

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Recent studies have shown that n6-methyladenosine (m6A) plays a major role in cardiovascular homeostasis and pathophysiology. These studies have confirmed that m6A methylation affects the pathophysiology of cardiovascular diseases by regulating cellular processes such as differentiation, proliferation, inflammation, autophagy, and apoptosis. Moreover, plenty of research has confirmed that m6A modification can delay the progression of CVD via the post-transcriptional regulation of RNA. However, there are few available summaries of m6A modification regarding CVD. In this review, we highlight advances in CVD-specific research concerning m6A modification, summarize the mechanisms underlying the involvement of m6A modification during the development of CVD, and discuss the potential of m6A modification as a therapeutic target of CVD.

7.
Front Cell Infect Microbiol ; 12: 1074380, 2022.
Article in English | MEDLINE | ID: mdl-36619747

ABSTRACT

Objective: The m6A methylation was involved in the pathogenesis of pulmonary tuberculosis (PTB), and our study aimed to reveal the potential association of m6A demethylase (ALKBH5, FTO) genes variation, expression levels and PTB. Methods: Eight SNPs (ALKBH5 gene rs8400, rs9913266, rs12936694, rs4925144 and FTO gene rs6499640, rs8047395, rs1121980, rs9939609) were selected for genotyping by SNPscan technique in 449 PTB patients and 463 healthy controls. Results: The mRNA expression levels of ALKBH5, FTO were detected by qRT-PCR. There were no significant differences in genotype, allele distributions of all SNPs between PTB patients and healthy controls. Haplotype analysis demonstrated that the frequency of FTO gene GAAA haplotype was significantly reduced in PTB patients when compared to controls. ALKBH5 rs8400 AA genotype, A allele frequencies were associated with the decreased risk of sputum smear-positive, while AA genotype frequency was related to the increased risk of hypoproteinemia in PTB patients. In addition, rs9913266 variant was linked to the occurrence of drug-induced liver injury, sputum smear-positive, and rs4925144 variant was associated with leukopenia among PTB patients. In FTO gene, rs8047395 GG genotype and G allele frequencies were significantly higher in the PTB patients with drug resistance than that in the PTB patients without drug resistance. The ALKBH5, FTO expression levels were significantly decreased in PTB patients in comparison to controls. Moreover, ALKBH5 level was increased in PTB patients with drug resistance, and FTO level was decreased in PTB patients with sputum smear-positive. Conclusion: FTO gene polymorphisms might be associated with PTB susceptibility, and ALKBH5, FTO levels were decreased in PTB patients, suggesting that these m6A demethylase played important roles in PTB.


Subject(s)
Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/genetics , Genotype , Polymorphism, Single Nucleotide , Gene Frequency , Alleles , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , AlkB Homolog 5, RNA Demethylase/genetics , AlkB Homolog 5, RNA Demethylase/metabolism
8.
RNA Biol ; 18(sup2): 794-803, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34806556

ABSTRACT

In plants, recent studies have revealed that N6-methyladenosine (m6A) methylation of mRNA has potential regulatory functions of this mRNA modification in many biological processes. m6A methyltransferase, m6A demethylase and m6A-binding proteins can cause differential phenotypes, indicating that m6A may have critical roles in the plant. In this study, we depicted the m6A map of sea buckthorn (Hippophae rhamnoides Linn.) transcriptome. Similar to A. thaliana, m6A sites of sea buckthorn transcriptome is significantly enriched around the stop codon and within 3'-untranslated regions (3'UTR). Gene ontology analysis shows that the m6A modification genes are associated with metabolic biosynthesis. In addition, we identified 13,287 different m6A peaks (DMPs) between leaf under drought (TR) and control (CK) treatment. It reveals that m6A has a high level of conservation and has a positive correlation with mRNA abundance in plants. GO and KEGG enrichment results showed that DMP modification DEGs in TR were particularly associated with ABA biosynthesis. Interestingly, our results showed three m6A demethylase (HrALKBH10B, HrALKBH10C and HrALKBH10D) genes were significantly increased following drought stress, which indicated that it may contributed the decreased m6A levels. This exhaustive m6A map provides a basis and resource for the further functional study of mRNA m6A modification in abiotic stress.


Subject(s)
Adenosine/analogs & derivatives , Droughts , Gene Expression Regulation, Plant , Hippophae/physiology , RNA, Messenger/genetics , Stress, Physiological , Transcriptome , Adenosine/genetics , Adenosine/metabolism , Gene Expression Profiling , Hippophae/classification , Methylation , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/metabolism , Signal Transduction
9.
Mol Ther Nucleic Acids ; 25: 277-292, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34484859

ABSTRACT

Pancreatic cancer is the deadliest malignancy of the digestive system and is the seventh most common cause of cancer-related deaths worldwide. The incidence and mortality of pancreatic cancer continue to increase, and its 5-year survival rate remains the lowest among all cancers. N6-methyladenine (m6A) is the most abundant reversible RNA modification in various eukaryotic messenger and long noncoding RNAs and plays crucial roles in the occurrence and development of cancers. However, the role of m6A in pancreatic cancer remains unclear. The present study aimed to explore the role of m6A and its regulators in pancreatic cancer and assess its underlying molecular mechanism associated with pancreatic cancer cell proliferation, invasion, and metastasis. Reduced expression of the m6A demethylase, fat mass and obesity-associated protein (FTO), was responsible for the high levels of m6A RNA modification in pancreatic cancer. Moreover, FTO demethylated the m6A modification of praja ring finger ubiquitin ligase 2 (PJA2), thereby reducing its mRNA decay, suppressing Wnt signaling, and ultimately restraining the proliferation, invasion, and metastasis of pancreatic cancer cells. Altogether, this study describes new, potential molecular therapeutic targets for pancreatic cancer that could pave the way to improve patient outcome.

10.
ACS Chem Neurosci ; 12(20): 3818-3828, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34491720

ABSTRACT

The pathogenesis of Alzheimer's disease (AD), the most prevalent form of dementia, remains unclear. Over the past few years, evidence has accumulated indicating that perturbed cerebral bioenergetics and neuroinflammation may compromise cognitive functions and precedes the onset of AD and that impaired function of glial cells can likely contribute to the development of the disease. Recently, N6-methyladenosine (m6A) modification of RNA has been implicated in the regulation of different processes in the brain and to play a potential role in neurodegeneration. In the present study, we investigated the potential role of the m6A machinery enzymes in a streptozotocin (STZ) model of AD in human astrocytoma CCF-STTG1 cells. We observed that STZ-treated astrocytes expressed significantly higher levels of m6A demethylase fat mass and obesity-associated protein (FTO) and m6A reader YTHDF1 (YTH domain-containing family protein 1). Our experiments revealed that MO-I-500, a novel pharmacological inhibitor of FTO, can strongly reduce the adverse effects of STZ. Inhibition of FTO enhanced the survival of cells exposed to STZ and suppressed oxidative stress, apoptosis, elevated expression of glial fibrillary acidic protein, mitochondrial dysfunction, and bioenergetic disturbances induced by this compound. Overall, the results of this study indicate that perturbed m6A signaling may be contributing to AD pathogenesis, likely by compromising astrocyte bioenergetics.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Astrocytes , Adenosine , Humans , Mitochondria , Streptozocin/toxicity
11.
Onco Targets Ther ; 13: 1461-1470, 2020.
Article in English | MEDLINE | ID: mdl-32110044

ABSTRACT

BACKGROUND: The fat mass and obesity-associated protein (FTO) was identified as a critical demethylase involved in regulating cellular mRNA stability by removing N6-methyladenosine (m6A) residues from mRNA. Emerging evidence has revealed that FTO is deeply implicated in lung cancer. However, knowledge of the function of FTO in lung adenocarcinoma (LUAC) is limited. METHODS: FTO and FTO R96Q (R96Q), an FTO missense mutant lacking demethylase activity, were ectopically overexpressed, and FTO was knocked down via siRNA in A549 and H1299 cells. The relationships between FTO with cell characteristics and mRNA m6A levels were explored. Furthermore, RNA sequencing was performed on A549 cells. RESULTS: FTO overexpression enhanced the proliferation, migration, and invasion ability of A549 and H1299 cells, decreased mRNA m6A levels. Interestingly, overexpression of R96Q, blunted the effects of FTO overexpression on cell proliferation and invasion. Through RNA sequencing analysis of A549 cells overexpressing FTO or R96Q and control A594 cells, 45 genes were identified as affected by m6A mRNA demethylation. Most of these genes were related to lung cancer, such as laminin γ2, thrombospondin 1, nerve growth factor inducible, integrin alpha11, and proprotein convertase subtilisin/kexin type 9. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that these genes are fundamental to cancer development processes, such as cell migration and extracellular matrix organization. CONCLUSION: Our research shows that FTO facilitates LUAC cell progression by activating cell migration through m6A demethylation; however, further research on the mechanism underlying FTO activity in LUAC is necessary.

12.
Stroke ; 50(10): 2912-2921, 2019 10.
Article in English | MEDLINE | ID: mdl-31436138

ABSTRACT

Background and Purpose- Adenosine in many types of RNAs can be converted to m6A (N6-methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m6A methylation of RNAs. As recent studies showed that m6A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m6A methylation in mRNAs and lncRNAs. Methods- Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m6A levels were measured by dot blot analysis, and transcriptome-wide m6A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m6A changes after stroke. Expression of m6A writers, readers, and erasers was also estimated in the ischemic brain. Results- Global m6A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m6A methylated mRNAs. The m6A writers were unaltered, but the m6A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions- This is the first study to show that stroke alters the cerebral m6A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview- An online visual overview is available for this article.


Subject(s)
Adenosine/metabolism , Gene Expression Regulation/physiology , Infarction, Middle Cerebral Artery/metabolism , RNA/metabolism , Animals , Brain/metabolism , Methylation , Mice , Mice, Inbred C57BL , Transcriptome
13.
J Pharm Biomed Anal ; 162: 9-15, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30219599

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent internal modification of eukaryotic messenger RNA (mRNA). Until now, two RNA demethylases have been identified, including FTO (fat mass and obesity-associated protein) and ALKBH5 (α-ketoglutarate-dependent dioxygenase alkB homologue 5). As a mammalian m6A demethylase, ALKBH5 significantly affects mRNA export and RNA metabolism as well as the assembly of mRNA processing factors in nuclear speckles, and ALKBH5 may play a significant role in these biological processes. Nevertheless, no modulator of ALKBH5 has been reported. The reason for that may be the lack of in vitro assays for ALKBH5 inhibitor screening. Herein, we describe the development of two homogeneous assays for ALKBH5 using N6-methyladenosine as substrate with different principles. Using ALKBH5 recombinant, we developed a formaldehyde dehydrogenase coupled fluorescence based assay and an antibody based assay for the activity evaluation of ALKBH5. These robust coupled assays are suitable for screening ALKBH5 inhibitors in 384-well format (Z' factors of 0.74), facilitating the discovery of modulators in the quest for the regulation of biological processes.


Subject(s)
Adenosine/analogs & derivatives , Aldehyde Oxidoreductases/metabolism , AlkB Homolog 5, RNA Demethylase/metabolism , Drug Discovery/methods , Fluorescent Antibody Technique , Formaldehyde/metabolism , High-Throughput Screening Assays/methods , RNA, Messenger/metabolism , Adenosine/metabolism , Aldehyde Oxidoreductases/antagonists & inhibitors , AlkB Homolog 5, RNA Demethylase/antagonists & inhibitors , Demethylation , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Reproducibility of Results , Spectrometry, Fluorescence
14.
Front Oncol ; 8: 408, 2018.
Article in English | MEDLINE | ID: mdl-30319972

ABSTRACT

Alternative splicing is a pervasive mechanism that molds the transcriptome to meet cell and organism needs. However, how this layer of gene expression regulation is coordinated with other aspects of the cell metabolism is still largely undefined. Glucose is the main energy and carbon source of the cell. Not surprisingly, its metabolism is finely tuned to satisfy growth requirements and in response to nutrient availability. A number of studies have begun to unveil the connections between glucose metabolism and splicing programs. Alternative splicing modulates the ratio between M1 and M2 isoforms of pyruvate kinase in this way determining the choice between aerobic glycolysis and complete glucose oxidation in the Krebs cycle. Reciprocally, intermediates in the Krebs cycle may impact splicing programs at different levels by modulating the activity of 2-oxoglutarate-dependent oxidases. In this review we discuss the molecular mechanisms that coordinate alternative splicing programs with glucose metabolism, two aspects with profound implications in human diseases.

15.
Article in English | MEDLINE | ID: mdl-30105001

ABSTRACT

Fat mass and obesity-associated protein (FTO) single-nucleotide polymorphisms (SNPs) have been linked to increased body mass and obesity in humans by genome-wide association studies (GWAS) since 2007. Although some recent studies suggest that the obesity-related SNPs in FTO influence obesity susceptibility likely through altering the expression of the adjacent genes such as IRX3 and RPGRIP1L, rather than FTO itself, a solid link between the SNP risk genotype and the increased FTO expression in both human blood cells and fibroblasts has been reported. Moreover, multiple lines of evidence have demonstrated that FTO does play a critical role in the regulation of fat mass, adipogenesis, and body weight. Epidemiology studies also showed a strong association of FTO SNPs and overweight/obesity with increased risk of various types of cancers. As the first identified messenger RNA N6-methyladenosine (m6A) demethylase, FTO has been shown recently to play m6A-dependent roles in adipogenesis and tumorigenesis (especially in the development of leukemia and glioblastoma). Given the critical roles of FTO in cancers, the development of selective and effective inhibitors targeting FTO holds potential to treat cancers. This mini review discusses the roles and underlying molecular mechanisms of FTO in both obesity and cancers, and also summarizes recent advances in the development of FTO inhibitors.

16.
Methods Enzymol ; 560: 117-30, 2015.
Article in English | MEDLINE | ID: mdl-26253968

ABSTRACT

N(6)-Methyladenosine (m(6)A) represents the most prevalent internal modification in messenger and long noncoding RNAs. There has been a surge of interest toward understanding the biological significance of m(6)A modification. In this chapter, we describe the methods for biochemically studying the recently uncovered m(6)A methyltransferases (METTL3 and METTL14) and demethylases (FTO and ALKBH5). How to express these proteins, perform their biochemistry reactions against various RNA probes, and characterize the methylation and demethylation activity will be discussed.


Subject(s)
Adenosine/analogs & derivatives , RNA, Long Noncoding/genetics , RNA, Nuclear/chemistry , Adenosine/chemistry , Adenosine/genetics , AlkB Homolog 5, RNA Demethylase , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Catalysis , Dioxygenases/chemistry , Dioxygenases/genetics , Dioxygenases/isolation & purification , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Methyltransferases/biosynthesis , Methyltransferases/chemistry , Methyltransferases/genetics , Methyltransferases/isolation & purification , Proteins/chemistry , Proteins/genetics , Proteins/isolation & purification , RNA, Long Noncoding/chemistry , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Nuclear/genetics
17.
J Biol Chem ; 289(17): 11571-11583, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24616105

ABSTRACT

N(6)-Methylation of adenosine is the most ubiquitous and abundant modification of nucleoside in eukaryotic mRNA and long non-coding RNA. This modification plays an essential role in the regulation of mRNA translation and RNA metabolism. Recently, human AlkB homolog 5 (Alkbh5) and fat mass- and obesity-associated protein (FTO) were shown to erase this methyl modification on mRNA. Here, we report five high resolution crystal structures of the catalytic core of Alkbh5 in complex with different ligands. Compared with other AlkB proteins, Alkbh5 displays several unique structural features on top of the conserved double-stranded ß-helix fold typical of this protein family. Among the unique features, a distinct "lid" region of Alkbh5 plays a vital role in substrate recognition and catalysis. An unexpected disulfide bond between Cys-230 and Cys-267 is crucial for the selective binding of Alkbh5 to single-stranded RNA/DNA by bringing a "flipping" motif toward the central ß-helix fold. We generated a substrate binding model of Alkbh5 based on a demethylation activity assay of several structure-guided site-directed mutants. Crystallographic and biochemical studies using various analogs of α-ketoglutarate revealed that the active site cavity of Alkbh5 is much smaller than that of FTO and preferentially binds small molecule inhibitors. Taken together, our findings provide a structural basis for understanding the substrate recognition specificity of Alkbh5 and offer a foundation for selective drug design against AlkB members.


Subject(s)
Dioxygenases/chemistry , Membrane Proteins/chemistry , AlkB Homolog 5, RNA Demethylase , Amino Acid Sequence , Crystallography, X-Ray , Dioxygenases/metabolism , Humans , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Structure-Activity Relationship , Substrate Specificity
18.
Biochim Biophys Acta ; 1842(10): 2039-47, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24518103

ABSTRACT

Genome wide association studies undoubtedly linked variants of the fat mass and obesity-associated protein (FTO) to obesity. To date, however, knowledge on the mechanisms coupling variants in the intron of the FTO gene to its expression or enzymatic activity to alter metabolism remains scarce. Until recently, the investigation of the molecular function of FTO had not led to conclusive results concerning the 'where', 'when' and 'how' of FTO activity. Finally, since FTO was identified as a RNA modifying enzyme, demethylating N6-methyladenosine on single stranded RNA, novel understanding of the molecular function is gathered. These and other studies suggest the requirement for a further reaching approach to further investigate FTO function, since the phenotype of aberrant FTO function may encompass more than just obesity. Taking these new insights and translating them into appropriate paradigms for functional research in humans may lead to a deeper understanding of the human physiology and disease. This article is part of a Special Issue entitled: From Genome to Function.

SELECTION OF CITATIONS
SEARCH DETAIL