Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EFSA J ; 21(1): e07729, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36721864

ABSTRACT

Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in maize GA21 × T25 does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that maize GA21 × T25, as described in this application, is as safe as its conventional counterpart and the non-GM reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable maize GA21 × T25 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize GA21 × T25. Post-market monitoring of food and feed is not considered necessary. The GMO Panel concludes that maize GA21 × T25 is as safe as its conventional counterpart and the non-GM reference varieties tested, with respect to potential effects on human and animal health and the environment.

2.
Neuroscientist ; : 10738584221112336, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35904350

ABSTRACT

The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.

3.
EFSA J ; 19(8): e06781, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34429778

ABSTRACT

Cotton GHB811 was developed to confer tolerance to glyphosate and HPPD inhibitor herbicides. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between cotton GHB811 and its conventional counterpart needs further assessment, except for % lint, lint length and dihydrosterculic acid, which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the 2mEPSPS and HPPD W336 proteins as expressed in cotton GHB811 and finds no evidence that the genetic modification would change the overall allergenicity of cotton GHB811. In the context of this application, the consumption of food and feed from cotton GHB811 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that cotton GHB811 is as safe as the conventional counterpart and non-GM cotton reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton GHB811 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton GHB811. The GMO Panel concludes that cotton GHB811 is as safe as its conventional counterpart and the tested non-GM cotton reference varieties with respect to potential effects on human and animal health and the environment.

4.
EFSA J ; 18(11): e06302, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33250936

ABSTRACT

Soybean DAS-8419-2 × DAS-44406-6 was developed to provide protection against certain lepidopteran pests and tolerance to 2,4-dichlorophenoxyacetic acid and other related phenoxy herbicides, and glyphosate- and glufosinate ammonium-containing herbicides. The Genetically Modified Organisms (GMO) Panel previously assessed the two single soybean events and did not identify safety concerns. No new data on the single soybean events, leading to modification of the original conclusions on their safety have been identified. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single soybean events and of the newly expressed proteins in the two-event stack soybean does not give rise to food and feed safety and nutritional concerns. In the case of accidental release of viable DAS-8419-2 × DAS-44406-6 seeds into the environment, soybean DAS-8419-2 × DAS-44406-6 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean DAS-8419-2 × DAS-44406-6. In conclusion, the GMO Panel considers that soybean DAS-8419-2 × DAS-44406-6, as described in this application, is as safe as its conventional counterpart and the non-genetically modified soybean reference varieties tested with respect to potential effects on human and animal health and the environment.

5.
EFSA J ; 16(4): e05213, 2018 Apr.
Article in English | MEDLINE | ID: mdl-32625862

ABSTRACT

The three-event stack cotton GHB614 × LLCotton25 × MON 15985 was produced by conventional crossing to combine three single cotton events, GHB614, LLCotton25 and MON 15985. The EFSA GMO Panel previously assessed the three single events and did not identify safety concerns. No new data on the single events that could lead to modification of the original conclusions on their safety were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single events and of the newly expressed proteins in the three-event stack cotton did not give rise to food and feed safety or nutritional issues. Food and feed derived from cotton GHB614 × LLCotton25 × MON 15985 are expected to have the same nutritional impact as those derived from the non-GM comparator. In the case of accidental release of viable GHB614 × LLCotton25 × MON 15985 cottonseeds into the environment, this three-event stack cotton would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton GHB614 × LLCotton25 × MON 15985. In conclusion, the GMO Panel considers that cotton GHB614 × LLCotton25 × MON 15985, as described in this application, is as safe as the non-GM comparator with respect to potential effects on human and animal health and the environment.

6.
J Agric Food Chem ; 65(38): 8459-8465, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28892386

ABSTRACT

MZHG0JG corn will offer growers the flexibility to alternate between herbicides with two different modes of action in their weed-management programs, helping to mitigate and manage the evolution of herbicide resistance in weed populations. The proteins conferring herbicide tolerence in MZHG0JG corn, double-mutated 5-enol pyruvylshikimate-3-phosphate synthase protein (mEPSPS) and phosphinothricin acetyltransferase (PAT), as well as the MZHG0JG corn event, have been assessed by regulatory authorities globally and have been determined to be safe for humans, animals, and the environment. In addition to the safety data available for these proteins, further studies were conducted on MZHG0JG corn to assess levels of mEPSPS as compared to previously registered genetically modified (GM) corn. The results support the conclusion of no impact on toxicological safety or nutritional composition.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Acetyltransferases/genetics , Bacterial Proteins/genetics , Plants, Genetically Modified/genetics , Zea mays/genetics , 3-Phosphoshikimate 1-Carboxyvinyltransferase/metabolism , Acetyltransferases/metabolism , Agrobacterium tumefaciens/enzymology , Bacterial Proteins/metabolism , Hazard Analysis and Critical Control Points , Herbicide Resistance , Herbicides/pharmacology , Mutation , Nutritive Value , Plants, Genetically Modified/adverse effects , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/metabolism , Streptomyces/enzymology , Zea mays/adverse effects , Zea mays/drug effects , Zea mays/metabolism
7.
EFSA J ; 15(3): e04738, 2017 Mar.
Article in English | MEDLINE | ID: mdl-32625444

ABSTRACT

Soybean DAS-44406-6 expresses 5-enolpyruvyl-shikimate-3-phosphate synthase (2mEPSPS), conferring tolerance to glyphosate-based herbicides, aryloxyalkanoate dioxygenase (AAD-12), conferring tolerance to 2,4-dichlorophenoxyacetic acid (2,4-D) and other related phenoxy herbicides, and phosphinothricin acetyl transferase (PAT), conferring tolerance to glufosinate ammonium-based herbicides. The molecular characterisation data and bioinformatics analyses did not identify issues requiring assessment for food/feed safety. The agronomic and phenotypic characteristics revealed no relevant differences between soybean DAS-44406-6 and its conventional counterpart, except for pod count, seed count and yield. The compositional analysis identified no differences requiring further assessment, except for an increase (up to 31%) in lectin activity in soybean DAS-44406-6. Such increase is unlikely to raise additional concerns for food/feed safety and nutrition of soybean DAS-44406-6 as compared to its conventional counterpart and non-GM reference varieties. There were no concerns regarding the potential toxicity and allergenicity of the three newly expressed proteins, and no evidence that the genetic modification might significantly change the overall allergenicity of soybean DAS-44406-6. Soybean DAS-44406-6 is as nutritious as its conventional counterpart and the non-GM soybean reference varieties tested. There are no indications of an increased likelihood of establishment and spread of occasional feral soybean DAS-44406-6 plants, unless exposed to the intended herbicides. The likelihood of environmental effects from the accidental release of viable seeds from soybean DAS-44406-6 into the environment is therefore very low. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean DAS-44406-6. In conclusion, the GMO Panel considers that the information available for soybean DAS-44406-6 addresses the scientific comments raised by Member States and that soybean DAS-44406-6, as described in this application, is as safe as its conventional counterpart and non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment in the context of the scope of this application.

8.
EFSA J ; 15(4): e04744, 2017 Apr.
Article in English | MEDLINE | ID: mdl-32625455

ABSTRACT

In this opinion, the EFSA Panel on Genetically Modified Organisms (GMO) assesses the two-event stack soybean FG72 × A5547-127 for food and feed uses, import and processing. The EFSA GMO Panel previously assessed the two single events combined to produce the two-event stack soybean FG72 × A5547-127 and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety, were identified. The molecular, agronomic, phenotypic and compositional data on soybean FG72 × A5547-127 did not give rise to safety concerns and no reason to expect interactions between the single events impacting on the food and feed safety of the two-event stack soybean was identified. Although the EFSA GMO Panel cannot conclude on forage composition, soybean forage is not expected to be imported in a significant amount for use as feed. Considering the routes of exposure and limited exposure levels, the EFSA GMO Panel concludes that soybean FG72 × A5547-127 would not give rise to safety concerns in the event of accidental release of viable seeds into the environment. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of soybean FG72 × A5547-127. The EFSA GMO Panel concludes that soybean FG72 × A5547-127 is as safe as the non-genetically modified (GM) comparator and non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment.

SELECTION OF CITATIONS
SEARCH DETAIL