Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Carbohydr Res ; 542: 109200, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964015

ABSTRACT

The polymeric nanoparticles (PNPs) loaded with prednisolone were developed to exhibit pH-responsive properties owing to the attachment of a hydrazone linkage between the copolymer chitosan and mPEG. In the diseased cellular environment, the hydrazone bond tends to break due to reduced pH, leading to the release of the drug from the PNPs at the required site of action. The fabricated PNPs exhibit spherical morphology, optimum size (∼200 nm), negative surface charge, and monodispersed particle size distribution. The encapsulation efficiency of the PNPs was determined to be 71.1 ± 0.79 % and two experiments (polymer weight loss and drug release) confirmed the pH-responsive properties of the PNPs. The cellular study cytotoxicity assay showed biocompatibility of PNPs and drug molecule-mediated toxicity to A549 cells. The ligand atrial natriuretic peptide-attached PNPs internalized into A549 cells via natriuretic peptide receptor-A to achieve target specificity. The PNPs cytotoxicity and pH-response medicated inflammation reduction functionality was studied in inflammation-induced RAW264.7 cell lines. The study observed the PNPs effectively reduced the inflammatory mediators NO and ROS levels in RAW264.7. The results showed that pH-responsive properties of PNPs and this novel fabricated delivery system effectively treat inflammatory and cancer diseases.


Subject(s)
Chitosan , Click Chemistry , Nanoparticles , Chitosan/chemistry , Chitosan/pharmacology , Hydrogen-Ion Concentration , Humans , Mice , Animals , Nanoparticles/chemistry , RAW 264.7 Cells , A549 Cells , Drug Carriers/chemistry , Drug Carriers/chemical synthesis , Drug Delivery Systems , Particle Size , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Drug Liberation , Prednisolone/chemistry , Prednisolone/pharmacology , Cell Survival/drug effects
2.
J Pharm Biomed Anal ; 89: 221-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24316423

ABSTRACT

Ensuring quality of PEGylating reagents is essential for the successful development and manufacturing of PEGylated biopharmaceuticals. However, little is known about how to maintain and verify the quality of PEG raw materials for PEGylated protein manufacturing. In this study, monomethoxy polyethylene glycol propionaldehyde (mPEG-aldehyde) was subjected to conditions that mimic accelerated stability conditions. Separation of trace-level degradation products in the presence of mPEG-aldehyde was achieved by derivatization with 2,4-dinitrophenylhydrazine (DNPH), followed by reversed phase high performance liquid chromatography with ultraviolet detection (RP-HPLC-UV) at 355nm. Structural characterization by atmospheric pressure chemical ionization mass spectrometry (APCI-MS) identified formaldehyde, acetaldehyde, crotonaldehyde, acrolein, benzaldehyde, and tolualdehyde as major degradation products or process-related impurities. The presence of formaldehyde and acrolein was confirmed by (1)H NMR in the forced degraded mPEG-aldehyde samples without derivatization of mPEG-aldehyde. Findings from this study imply that reactive impurities could form as a result of inappropriate mPEG-aldehyde handling or storage. Further, a rapid screening method based on reversed phase HPLC was shown to be an effective screening assay used for routine screening of mPEG-aldehyde to ensure consistent PEGylated protein product quality.


Subject(s)
Polyethylene Glycols/chemistry , Acrolein/chemistry , Chromatography, High Pressure Liquid/methods , Formaldehyde/chemistry , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Phenylhydrazines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL