Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Angew Chem Int Ed Engl ; : e202413911, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319385

ABSTRACT

Therapeutic intervention targeting mRNA typically aims at reducing the levels of disease-causing sequences. Achieving the opposite effect of blocking the destruction of beneficial mRNA remains underexplored. The degradation of mRNA starts with the removal of poly(A) tails reducing their stability and translational activity which is mainly regulated by the CCR4-NOT complex. The subunit NOT9 binds various RNA binding proteins which recruit mRNA in a sequence-specific manner to the CCR4-NOT complex to promote their deadenylation. These RNA binding proteins interact with NOT9 through a helical NOT9 binding motif which we used as a starting point for development of the hydrocarbon stapled peptide NIP-2. The peptide (KD = 60.4 nM) was able to inhibit RNA-binding (IC50 = 333 nM) as well as the deadenylation activity of the CCR4-NOT complex in vitro while being cell-permeable (EC50 = 2.44 µM). A co-crystal structure of NIP-2 bound to NOT9 allowed further optimization of the peptide through point mutation leading to NIP-2-H27A-N3(KD = 122 nM) with high cell permeability (cell-permeability EC50 = 0.34 µM). The optimized peptide was able to inhibit deadenylation of target mRNAs when used in HeLa cells at a concentration of 100 µM demonstrating the feasibility of increasing mRNA stability.

2.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608448

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Subject(s)
Cell Nucleus , Cytoplasm , ELAV-Like Protein 1 , Interleukin-1beta , Interleukin-8 , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Cytoplasm/metabolism , Cell Nucleus/metabolism , Cell Line, Tumor , Cyclic S-Oxides/pharmacology , Protein Transport , Signal Transduction , Active Transport, Cell Nucleus , CRISPR-Cas Systems
3.
Arch Pharm Res ; 47(1): 66-81, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147203

ABSTRACT

The post-transcriptional processing of N6-methyladenosine (m6A)-modified mRNA by YTH domain-containing family protein 1 (YTHDF1) plays a crucial role in the regulation of gene expression. Although YTHDF1 expression is frequently upregulated in breast cancer, the regulatory mechanisms for this remain unclear. In this study, we examined the role of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in regulating YTHDF1 stability in breast cancer cells. The WW domain of PIN1 interacted with YTHDF1 in a phosphorylation-dependent manner. Additionally, PIN1 overexpression increased YTHDF1 stability by preventing ubiquitin-dependent proteasomal degradation. Furthermore, using the MS2-tagged RNA pull-down assay, we identified Aurora kinase A (AURKA) mRNA as a bona fide substrate of YTHDF1. PIN1-mediated YTHDF1 stabilization increased the stability of AURKA mRNA in an m6A-dependent manner. Furthermore, YTHDF1 knockout reduced AURKA protein expression levels, resulting in anticancer effects in breast cancer cells, including decreased cell proliferation, cell cycle arrest at the G0/G1 phase, apoptotic cell death, and decreased spheroid formation. The anticancer effects induced by YTHDF1 knockout were reversed by AURKA overexpression. Similarly, the knockout of PIN1 produced comparable anticancer effects to those observed in YTHDF1-knockout cells, and these effects were reversed upon overexpression of YTHDF1. In conclusion, the findings of our study suggest that increased YTHDF1 stability induced by PIN1 promotes breast tumorigenesis via the stabilization of AURKA mRNA. Targeting the PIN1/YTHDF1 axis may represent a novel therapeutic strategy for breast cancer.


Subject(s)
Aurora Kinase A , Breast Neoplasms , Humans , Female , NIMA-Interacting Peptidylprolyl Isomerase/genetics , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Phosphorylation , Carcinogenesis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Int J Oncol ; 62(3)2023 03.
Article in English | MEDLINE | ID: mdl-36734275

ABSTRACT

VIM­AS1, a cancer­specific long non­coding RNA, has been recognized as a pivotal regulator in multiple types of cancer. However, the role of VIM­AS1 in the proliferation and resistance to anti­androgen therapy of LNCaP and C4­2 prostate cancer cells remains to be determined. In the current study, gain­and­loss experiments were used to investigate the effects of VIM­AS on the proliferation and anti­androgen therapy of LNCaP and C4­2 cells. RNA sequencing, RNA pulldown and RNA immunoprecipitation were used to elucidate the underlying mechanism of VIM­AS1 driving prostate progression. It was demonstrated that VIM­AS1 was upregulated in C4­2 cells, an established castration­resistant prostate cancer (CRPC) cell line, compared with in LNCaP cells, an established hormone­sensitive prostate cancer cell line. The present study further demonstrated that VIM­AS1 was positively associated with the clinical stage of prostate cancer. Functionally, overexpression of VIM­AS1 decreased the sensitivity to enzalutamide treatment and enhanced the proliferation of LNCaP cells in vitro, whereas knockdown of VIM­AS1 increased the sensitivity to enzalutamide treatment and reduced the proliferation of C4­2 cells in vitro and in vivo. Mechanistically, 3­hydroxy­3­methylglutaryl­CoA synthase 1 (HMGCS1) was identified as one of the direct downstream targets of VIM­AS1, and VIM­AS1 promoted HMGCS1 expression by enhancing HMGCS1 mRNA stability through a VIM­AS1/insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2)/HMGCS1 RNA­protein complex. Rescue assays indicated that knockdown of HMGCS1 expression ameliorated the increase in proliferation and enzalutamide resistance of prostate cancer cells induced by VIM­AS1 overexpression. Overall, the present study determined the roles and mechanism of the VIM­AS1/IGF2BP2/HMGCS1 axis in regulating proliferation and enzalutamide sensitivity of prostate cancer cells and suggested that VIM­AS1 may serve as a novel therapeutic target for the treatment of patients with CRPC.


Subject(s)
Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant , RNA, Long Noncoding , Humans , Male , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Nitriles/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , RNA, Long Noncoding/genetics , RNA Stability
5.
Nucleic Acid Ther ; 33(1): 58-71, 2023 01.
Article in English | MEDLINE | ID: mdl-36355061

ABSTRACT

SHANK3 is a member of the SHANK family of scaffolding proteins that localize to the postsynaptic density of excitatory synapses. Mutations within the SHANK3 gene or SHANK3 haploinsufficiency is thought to be one of the major causes for Phelan-McDermid Syndrome (PMDS) that is characterized by a broad spectrum of autism-related behavioral alterations. Several approaches have already been proposed to elevate SHANK3 protein levels in PMDS patients like transcriptional activation or inhibition of SHANK3 degradation. We undertook a systematic screening approach and tested whether defined antisense oligonucleotides (ASOs) directed against the 3' untranslated region (3'-UTR) of the human SHANK3 mRNA are suitable to elevate SHANK3 protein levels. Using human induced pluripotent stem cells (hiPSCs) and hiPSCs-derived motoneurons from controls and PMDS patients we eventually identified two 18 nucleotide ASOs (ASO 4-5.2-4 and 4-5.2-6) that were able to increase SHANK3 protein levels in vitro by about 1.3- to 1.6-fold. These findings were confirmed by co-transfection of the identified ASOs with a GFP-SHANK3-3'-UTR construct in HEK293T cells using GFP protein expression as read-out. Based on these results we propose a novel approach to elevate SHANK3 protein concentrations by 3'-UTR specific ASOs. Further research is needed to test the suitability of SHANK3-specific ASOs as pharmacological compounds also in vivo.


Subject(s)
Induced Pluripotent Stem Cells , Nerve Tissue Proteins , Humans , RNA, Messenger/genetics , 3' Untranslated Regions/genetics , HEK293 Cells , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism
6.
J Exp Bot ; 74(7): 2352-2363, 2023 04 09.
Article in English | MEDLINE | ID: mdl-36480695

ABSTRACT

Transfer RNAs (tRNAs) are well known for their essential function as adapters in delivering amino acids to ribosomes and making the link between mRNA and protein according to the genetic code. Besides this central role in protein synthesis, other functions are attributed to these macromolecules, or their genes, in all living organisms. This review focuses on these extra functions of tRNAs in photosynthetic organisms. For example, tRNAs are implicated in tetrapyrrole biosynthesis, mRNA stabilization or transport, and priming the reverse transcription of viral RNAs, and tRNA-like structures play important roles in RNA viral genomes. Another important function of tRNAs in regulating gene expression is related to their cleavage allowing the production of small non-coding RNAs termed tRNA-derived RNAs. Here, we examine in more detail the biogenesis of tRNA-derived RNAs and their emerging functions in plants.


Subject(s)
Genetic Code , RNA, Transfer , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Amino Acids/genetics , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger
7.
Front Pharmacol ; 13: 947363, 2022.
Article in English | MEDLINE | ID: mdl-35935853
8.
Trends Genet ; 37(2): 188-200, 2021 02.
Article in English | MEDLINE | ID: mdl-32951946

ABSTRACT

Piwi-interacting RNAs (piRNAs) and PIWI proteins play key functions in a wide range of biological and developmental processes through the regulation of cellular mRNAs, in addition to their role in transposable element (TE) repression. Evolutionary studies indicate that these PIWI functions in mRNA regulatory programs, occurring in both germ and somatic cells, are ancestral. Recent advances have widely expanded our understanding of these functions of PIWI proteins, identifying new mechanisms of action and strengthening their importance through their conservation in distant species. In this review, we discuss the latest findings regarding piRNA/PIWI-dependent mRNA decay in germ cells and during the maternal-to-zygotic transition in embryos combined with new modes of action of PIWI proteins in mRNA stabilization and translational activation and piRNA-independent roles of PIWI proteins in cancer.


Subject(s)
Argonaute Proteins/genetics , Gene Regulatory Networks/genetics , RNA, Small Interfering/genetics , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , Humans , RNA Stability/genetics , RNA, Messenger/genetics , Transcriptional Activation/genetics
9.
Stem Cell Reports ; 15(4): 883-897, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32976762

ABSTRACT

During brain development, neural stem cells (NSCs) initially produce neurons and change their fate to generate glias. While the regulation of neurogenesis is well characterized, specific markers for glial precursor cells (GPCs) and the master regulators for gliogenesis remain unidentified. Accumulating evidence suggests that RNA-binding proteins (RBPs) have significant roles in neuronal development and function, as they comprehensively regulate the expression of target genes in a cell-type-specific manner. We systematically investigated the expression profiles of 1,436 murine RBPs in the developing mouse brain and identified quaking (Qk) as a marker of the putative GPC population. Functional analysis of the NSC-specific Qk-null mutant mouse revealed the key role of Qk in astrocyte and oligodendrocyte generation and differentiation from NSCs. Mechanistically, Qk upregulates gliogenic genes via quaking response elements in their 3' untranslated regions. These results provide crucial directions for identifying GPCs and deciphering the regulatory mechanisms of gliogenesis from NSCs.


Subject(s)
Cell Lineage , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuroglia/cytology , Neuroglia/metabolism , RNA-Binding Proteins/metabolism , Animals , Astrocytes/metabolism , Atrophy/pathology , Biomarkers/metabolism , Brain/pathology , Cell Differentiation , Endocytosis/genetics , Mice, Knockout , Myelin Sheath/pathology , Neurons/cytology , Neurons/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Regulon/genetics , Signal Transduction/genetics , Up-Regulation/genetics
10.
Yakugaku Zasshi ; 140(5): 687-700, 2020.
Article in Japanese | MEDLINE | ID: mdl-32378673

ABSTRACT

Recent advances in high-throughput technologies have revealed that 75% of the human genome is transcribed to RNA, whereas only 3% of transcripts are translated into proteins. Consequently, many long non-coding RNAs (lncRNAs) have been identified, which has improved our understanding of the complexity of biological processes. LncRNAs comprise multiple classes of RNA transcripts that regulate the transcription, stability and translation of protein-coding genes in a genome. Natural antisense transcripts (NATs) form one such class, and the GENCODE v30 catalog contains 16193 lncRNA loci, of which 5611 are antisense loci. This review outlines our emerging understanding of lncRNAs, with a particular focus on how lncRNAs regulate gene expression using interferon-α1 (IFN-α1) mRNA and its antisense partner IFN-α1 antisense (as)RNA as an example. We have identified and characterized the asRNA that determines post-transcriptional IFN-α1 mRNA levels. IFN-α1 asRNA stabilizes IFN-α1 mRNA by cytoplasmic sense-antisense duplex formation, which may enhance the accessibility of an RNA stabilizer protein or decrease the affinity of an RNA decay factor for the RNA. IFN-α1 asRNA can also act as competing molecules in the competing endogenous (ce)RNA network with other members of the IFNA multigene family mRNAs/asRNAs, and other cellular mRNA transcripts. Furthermore, antisense oligoribonucleotides representing functional domains of IFN-α1 asRNA inhibit influenza virus proliferation in the respiratory tract of virus-infected animals. Thus, these findings support, at least in part, the rationale that dissecting the activity of NAT on gene expression regulation promises to reveal previously unanticipated biology, with potential to provide new therapeutic approaches to diseases.


Subject(s)
Gene Expression Regulation/genetics , RNA, Antisense/physiology , RNA, Untranslated/physiology , Animals , Genome, Human/genetics , Humans , Interferon-alpha/chemistry , Interferon-alpha/genetics , Multigene Family , Oligoribonucleotides, Antisense/physiology , Orthomyxoviridae/physiology , RNA Stability , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Respiratory System/virology , Transcription, Genetic/genetics , Virus Replication
11.
Cell Rep ; 30(13): 4567-4583.e5, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234488

ABSTRACT

Ewing sarcoma (EwS) is associated with poor prognosis despite current multimodal therapy. Targeting of EWS-FLI1, the fusion protein responsible for its pathogenesis, and its principal downstream targets has not yet produced satisfactory therapeutic options, fueling the search for alternative approaches. Here, we show that the oncofetal RNA-binding protein LIN28B regulates the stability of EWS-FLI1 mRNA in ~10% of EwSs. LIN28B depletion in these tumors leads to a decrease in the expression of EWS-FLI1 and its direct transcriptional network, abrogating EwS cell self-renewal and tumorigenicity. Moreover, pharmacological inhibition of LIN28B mimics the effect of LIN28B depletion, suggesting that LIN28B sustains the emergence of a subset of EwS in which it also serves as an effective therapeutic target.


Subject(s)
Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Protein c-fli-1/metabolism , RNA-Binding Protein EWS/metabolism , RNA-Binding Proteins/metabolism , Sarcoma, Ewing/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation , Cell Self Renewal , Clone Cells , Gene Expression Regulation, Neoplastic , Humans , Kinetics , Mice , Protein Stability , RNA Stability , RNA-Binding Proteins/genetics , Sarcoma, Ewing/genetics , Spheroids, Cellular/pathology
12.
J Cyst Fibros ; 19(5): 733-741, 2020 09.
Article in English | MEDLINE | ID: mdl-32067958

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. We previously described a first-in-class CFTR modulator that functions as an amplifier to selectively increase CFTR expression and function. The amplifier mechanism is distinct from and complementary to corrector and potentiator classes of CFTR modulators. Here we characterize the mechanism by which amplifiers increase CFTR mRNA, protein, and activity. METHODS: Biochemical studies elucidated the action of amplifiers on CFTR mRNA abundance and translation and defined the role of an amplifier-binding protein that was identified using chemical proteomics. RESULTS: Amplifiers stabilize CFTR mRNA through a process that requires only the translated sequence of CFTR and involves translational elongation. Amplifiers enrich ER-associated CFTR mRNA and increase its translational efficiency through increasing the fraction of CFTR mRNA associated with polysomes. Pulldowns identified the poly(rC)-binding protein 1 (PCBP1) as directly binding to amplifier. A PCBP1 consensus element was identified within the CFTR open reading frame that binds PCBP1. This sequence proved necessary for amplifier responsiveness. CONCLUSIONS: Small molecule amplifiers co-translationally increase CFTR mRNA stability. They enhance translation through addressing the inherently inefficient membrane targeting of CFTR mRNA. Amplifiers bind directly to PCBP1, show enhanced affinity in the presence of bound RNA, and require a PCBP1 consensus element within CFTR mRNA to elicit translational effects. These modulators represent a promising new and mechanistically novel class of CFTR therapeutic. They may be useful as a monotherapy or in combination with other CFTR modulators.


Subject(s)
Chloride Channel Agonists/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis/genetics , DNA-Binding Proteins/drug effects , RNA-Binding Proteins/drug effects , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , DNA-Binding Proteins/physiology , Gene Expression Regulation/drug effects , Humans , RNA, Messenger/drug effects , RNA-Binding Proteins/physiology
13.
FASEB J ; 33(12): 14636-14652, 2019 12.
Article in English | MEDLINE | ID: mdl-31665914

ABSTRACT

The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis is a target of covalent drugs and bioactive native electrophiles. However, much of our understanding of Nrf2 regulation has been focused at the protein level. Here we report a post-transcriptional modality to directly regulate Nrf2-mRNA. Our initial studies focused on the effects of the key mRNA-binding protein (mRBP) HuR on global transcriptomic changes incurred upon oxidant or electrophile stimulation. These RNA-sequencing data and subsequent mechanistic analyses led us to discover a novel role of HuR in regulating Nrf2 activity, and in the process, we further identified the related mRBP AUF1 as an additional novel Nrf2 regulator. Both mRBPs regulate Nrf2 activity by direct interaction with the Nrf2 transcript. Our data showed that HuR enhances Nrf2-mRNA maturation and promotes its nuclear export, whereas AUF1 stabilizes Nrf2-mRNA. Both mRBPs target the 3'-UTR of Nrf2-mRNA. Using a Nrf2 activity-reporter zebrafish strain, we document that this post-transcriptional control of Nrf2 activity is conserved at the whole-vertebrate level.-Poganik, J. R., Long, M. J. C., Disare, M. T., Liu, X., Chang, S.-H., Hla, T., Aye, Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1.


Subject(s)
ELAV-Like Protein 1/metabolism , Heterogeneous Nuclear Ribonucleoprotein D0/metabolism , NF-E2-Related Factor 2/metabolism , RNA Processing, Post-Transcriptional , Animals , Cells, Cultured , ELAV-Like Protein 1/genetics , HEK293 Cells , Humans , Mice , Protein Binding , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Zebrafish
14.
Cancer Cell Int ; 19: 149, 2019.
Article in English | MEDLINE | ID: mdl-31164795

ABSTRACT

BACKGROUND: NPL4 is an important cofactor of the valosin-containing protein (VCP)-NPL4-UFD1 complex. The VCP-NPL4-UFD1 has been considered as a ubiquitin proteasome system (UPS) regulator and response to protein degradation. While NPL4 plays important roles in various diseases, little is known about its functions in bladder cancer (BC). METHODS: MTT assays and colony forming test were performed to evaluate cell proliferation ability and Western blotting was used to detect protein expression. Cyclin D1 mRNA expression was detected using qRT-PCR, and coimmunoprecipitation (CoIP) was used to detect protein-protein interactions. RESULTS: NPL4 was upregulated in BC tissue and correlated with poor prognosis. Upregulation of NPL4 promoted cell proliferation while suppression of NPL4 reduced BC cell proliferation. Upregulation of NPL4 led to overexpression of cyclin D1 by enhancing its mRNA stability. Moreover, NPL4 was found to bind directly to DXO and induce its degradation. DXO was downregulated in BC tissue and regulated BC cell proliferation by destabilizing cyclin D1 mRNA. DXO-mediated NPL4 regulated BC cell proliferation by stabilizing cyclin D1 expression. CONCLUSIONS: The NPL4/DXO/cyclin D1 axis exert crucial role in BC cell growth and is associated with prognosis and may represent a potential therapeutic target for BC.

15.
Acta Biochim Biophys Sin (Shanghai) ; 51(7): 743-752, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31089713

ABSTRACT

Insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) is a member of the IGF2BP protein family consisting of IGF2BP1~3 with the capacity of binding to many transcripts and regulating RNA stability, localization, and translation. In this study, we discovered that expression of IGF2BP2 was upregulated and led to a poor prognosis in pancreatic ductal adenocarcinoma (PDAC). IGF2BP2 protein was gradually elevated from normal pancreas, pancreatic intraepithelial neoplasia to PDAC in an LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx1-Cre mouse model. Furthermore, we demonstrated that IGF2BP2 promoted aerobic glycolysis and PDAC cell proliferation through directly binding to and stabilizing GLUT1 mRNA. In summary, our study unveiled an important role of IGF2BP2 in PDAC development by modulating aerobic glycolysis and as a potential therapeutic target for PDAC treatment.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Cell Proliferation/genetics , Glucose Transporter Type 1/genetics , Glycolysis/genetics , Pancreatic Neoplasms/genetics , RNA-Binding Proteins/genetics , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/therapy , Cell Line , Cell Line, Tumor , Dactinomycin/pharmacology , Gene Expression Regulation, Neoplastic , Glucose Transporter Type 1/metabolism , HEK293 Cells , Humans , Kaplan-Meier Estimate , Male , Mice, Nude , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/therapy , Protein Binding , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , RNAi Therapeutics/methods , Xenograft Model Antitumor Assays/methods
16.
J Exp Clin Cancer Res ; 38(1): 161, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30987669

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) have been identified to play an important role in the development and progression of various tumors, including colorectal cancer (CRC). However, the regulatory molecular mechanism by lncRNA in CRC initiation and progression has not been fully clarified. METHODS: TCGA database was used to identify the involvement of LINC01354 in CRC. qRT-PCR and western blot were used to determine RNA and protein expression. The gain- and loss-of-function assays were conducted to explore the function of LINC01354 in the progression of CRC. In order to investigate the LINC01354-mediated mRNA in CRC tumorigenesis, we applied the profiling analysis as well as GO and KEGG analysis. Pulldown and RIP assays were applied to detect the interaction of hnRNP-D with LINC01354 and ß-catenin. RESULTS: The upregulation of LINC01354 in CRC and its prognostic significance were identified by TCGA database and confirmed in CRC tissues. Functionally, forced expression of LINC01354 promoted, while knockdown of LINC01354 inhibited cell proliferation, migration and EMT phenotype formation of CRC cells. A significant enrichment of the Wnt/ß-catenin signaling pathway genes under LINC01354 overexpression. In addition, LINC01354 modulated the mRNA stability of ß-catenin through interacting with hnRNP-D, thereby activating Wnt/ß-catenin signaling pathway. CONCLUSIONS: Our investigations proposed novel regulatory axis of LINC01354/hnRNP-D/Wnt/ß-catenin, which might be in favor of exploring novel therapeutic regimens for the clinical treatment of CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein D/metabolism , RNA, Long Noncoding/genetics , Wnt Signaling Pathway , Adult , Aged , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Colorectal Neoplasms/pathology , Computational Biology/methods , Databases, Genetic , Epithelial-Mesenchymal Transition , Female , Gene Expression Profiling , Genes, Reporter , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Models, Biological , Neoplasm Metastasis , Neoplasm Staging , Nucleic Acid Conformation , Protein Binding , Protein Stability , RNA, Long Noncoding/chemistry , Tumor Burden , beta Catenin/metabolism
17.
Adv Exp Med Biol ; 1081: 23-44, 2018.
Article in English | MEDLINE | ID: mdl-30288702

ABSTRACT

In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.


Subject(s)
Acclimatization/genetics , Cold Temperature , Cold-Shock Response/genetics , Plants/genetics , RNA, Messenger/genetics , RNA, Plant/genetics , Gene Expression Regulation, Plant , Genotype , Phenotype , Plants/metabolism , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/metabolism , RNA, Plant/metabolism , Signal Transduction
18.
Biochim Biophys Acta Gene Regul Mech ; 1861(1): 29-40, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29208426

ABSTRACT

Hepatic low-density lipoprotein receptor (LDLR) is the primary conduit for the clearance of plasma LDL-cholesterol and increasing its expression represents a central goal for treating cardiovascular disease. However, LDLR mRNA is unstable and undergoes rapid turnover mainly due to the three AU-rich elements (ARE) in its proximal 3'-untranslated region (3'-UTR). Herein, our data revealed that 5-azacytidine (5-AzaC), an antimetabolite used in the treatment of myelodysplastic syndrome, stabilizes the LDLR mRNA through a previously unrecognized signaling pathway resulting in a strong increase of its protein level in human hepatocytes in culture. 5-AzaC caused a sustained activation of the inositol-requiring enzyme 1α (IRE1α) kinase domain and c-Jun N-terminal kinase (JNK) independently of endoplasmic reticulum stress. This resulted in activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase1/2 (ERK1/2) that, in turn, stabilized LDLR mRNA. Systematic mutation of the AREs (ARE1-3) in the LDLR 3'UTR and expression of each mutant coupled to a luciferase reporter in Huh7 cells demonstrated that ARE1 is required for rapid LDLR mRNA decay and 5-AzaC-induced mRNA stabilization via the IRE1α-EGFR-ERK1/2 signaling cascade. The characterization of this pathway will help to reveal potential targets to enhance plasma LDL clearance and novel cholesterol-lowering therapeutic strategies.


Subject(s)
AU Rich Elements/genetics , Azacitidine/administration & dosage , Endoribonucleases/genetics , ErbB Receptors/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, LDL/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Cholesterol, LDL/genetics , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , RNA Stability/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics
19.
RNA ; 23(9): 1444-1455, 2017 09.
Article in English | MEDLINE | ID: mdl-28611253

ABSTRACT

Post-transcriptional regulation of mRNA during oxygen deprivation, or hypoxia, can affect the survivability of cells. Hypoxia has been shown to increase stability of a subset of ischemia-related mRNAs, including VEGF. RNA binding proteins and miRNAs have been identified as important for post-transcriptional regulation of individual mRNAs, but corresponding mechanisms that regulate global stability are not well understood. Recently, mRNA modification by N6-methyladenosine (m6A) has been shown to be involved in post-transcriptional regulation processes including mRNA stability and promotion of translation, but the role of m6A in the hypoxia response is unknown. In this study, we investigate the effect of hypoxia on RNA modifications including m6A. Our results show hypoxia increases m6A content of poly(A)+ messenger RNA (mRNA), but not in total or ribosomal RNA in HEK293T cells. Using m6A mRNA immunoprecipitation, we identify specific hypoxia-modified mRNAs, including glucose transporter 1 (Glut1) and c-Myc, which show increased m6A levels under hypoxic conditions. Many of these mRNAs also exhibit increased stability, which was blocked by knockdown of m6A-specific methyltransferases METTL3/14. However, the increase in mRNA stability did not correlate with a change in translational efficiency or the steady-state amount of their proteins. Knockdown of METTL3/14 did reveal that m6A is involved in recovery of translational efficiency after hypoxic stress. Therefore, our results suggest that an increase in m6A mRNA during hypoxic exposure leads to post-transcriptional stabilization of specific mRNAs and contributes to the recovery of translational efficiency after hypoxic stress.


Subject(s)
Adenosine/analogs & derivatives , Hypoxia/genetics , Hypoxia/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adenosine/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Methylation , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA Stability
20.
Cell Mol Life Sci ; 74(2): 245-255, 2017 01.
Article in English | MEDLINE | ID: mdl-27510421

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Intracellular Space/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction/drug effects , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL