Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 548
Filter
1.
Magn Reson Med ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044654

ABSTRACT

PURPOSE: To demonstrate magnetization transfer (MT) effects with low specific absorption rate (SAR) on ultra-low-field (ULF) MRI. METHODS: MT imaging was implemented by using sinc-modulated RF pulse train (SPT) modules to provide bilateral off-resonance irradiation. They were incorporated into 3D gradient echo (GRE) and fast spin echo (FSE) protocols on a shielding-free 0.055T head scanner. MT effects were first verified using phantoms. Brain MT imaging was conducted in both healthy subjects and patients. RESULTS: MT effects were clearly observed in phantoms using six SPT modules with total flip angle 3600° at central primary saturation bands of approximate offset ±786 Hz, even in the presence of large relative B0 inhomogeneity. For brain, strong MT effects were observed in gray matter, white matter, and muscle in 3D GRE and FSE imaging using six and sixteen SPT modules with total flip angle 3600° and 9600°, respectively. Fat, cerebrospinal fluid, and blood exhibited relatively weak MT effects. MT preparation enhanced tissue contrasts in T2-weighted and FLAIR-like images, and improved brain lesion delineation. The estimated MT SAR was 0.0024 and 0.0008 W/kg for two protocols, respectively, which is far below the US Food and Drug Administration (FDA) limit of 3.0 W/kg. CONCLUSION: Robust MT effects can be readily obtained at ULF with extremely low SAR, despite poor relative B0 homogeneity in ppm. This unique advantage enables flexible MT pulse design and implementation on low-cost ULF MRI platforms to achieve strong MT effects in brain and beyond, potentially augmenting their clinical utility in the future.

2.
Sci Rep ; 14(1): 12961, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839823

ABSTRACT

A variation of the longitudinal relaxation time T 1 in brain regions that differ in their main fiber direction has been occasionally reported, however, with inconsistent results. Goal of the present study was to clarify such inconsistencies, and the origin of potential T 1 orientation dependence, by applying direct sample rotation and comparing the results from different approaches to measure T 1 . A section of fixed porcine spinal cord white matter was investigated at 3 T with variation of the fiber-to-field angle θ FB . The experiments included one-dimensional inversion-recovery, MP2RAGE, and variable flip-angle T 1 measurements at 22 °C and 36 °C as well as magnetization-transfer (MT) and diffusion-weighted acquisitions. Depending on the technique, different degrees of T 1 anisotropy (between 2 and 10%) were observed as well as different dependencies on θ FB (monotonic variation or T 1 maximum at 30-40°). More pronounced anisotropy was obtained with techniques that are more sensitive to MT effects. Furthermore, strong correlations of θ FB -dependent MT saturation and T 1 were found. A comprehensive analysis based on the binary spin-bath model for MT revealed an interplay of several orientation-dependent parameters, including the transverse relaxation times of the macromolecular and the water pool as well as the longitudinal relaxation time of the macromolecular pool.


Subject(s)
Spinal Cord , Water , White Matter , Animals , White Matter/diagnostic imaging , White Matter/physiology , Swine , Anisotropy , Spinal Cord/physiology , Protons , Rotation
3.
Abdom Radiol (NY) ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900324

ABSTRACT

PURPOSE: To non-invasively quantify pancreatic fibrosis and grade severity of chronic pancreatitis (CP) on dual-energy CT (DECT) and multiparametric MRI (mpMRI). METHODS: We included 72 patients (mean age:30years; 59 men) with suspected or confirmed CP from December 2019 to December 2021 graded as equivocal(n = 20), mild(n = 18), and moderate-marked(n = 34) using composite imaging and endoscopic ultrasound criteria. Study patients underwent multiphasic DECT and mpMRI of the abdomen. Normalized iodine concentration(NIC) and fat fraction(FF) on 6-minute delayed DECT, and T1 relaxation time(T1Rt), extracellular volume fraction(ECVf), intravoxel incoherent motion-based perfusion fraction(PF), and magnetization transfer ratio(MTR) on mpMRI of pancreas were compared. 20 renal donors(for DECT) and 20 patients with renal mass(for mpMRI) served as controls. RESULTS: NIC of pancreas in controls and progressive grades of CP were 0.24 ± 0.05, 0.80 ± 0.18, 1.06 ± 0.23, 1.40 ± 0.36, FF were 9.28 ± 5.89, 14.19 ± 5.29, 17.31 ± 5.99, 29.32 ± 12.22, T1Rt were 590.11 ± 61.13, 801.93 ± 211.01, 1006.79 ± 352.18, 1388.01 ± 312.23ms, ECVf were 0.07 ± 0.03, 0.30 ± 0.12, 0.41 ± 0.12, 0.53 ± 0.13, PF were 0.38 ± 0.04, 0.28 ± 0.07, 0.25 ± 0.09, 0.21 ± 0.05 and MTR were 0.12 ± 0.03, 0.15 ± 0.06, 0.21 ± 0.07, 0.26 ± 0.06, respectively. There were significant differences for all quantitative parameters between controls and mild CP; for NIC, PF, and ECVf between controls and progressive CP grades (p < 0.05). Area under curve for NIC, FF, T1Rt, ECVf, PF, and MTR in differentiating controls and mild CP were 1.00, 0.86, 0.95, 1.00, 0.90 and 0.84 respectively and for NIC, FF, ECVf and PF in differentiating controls and equivocal CP were 1.00, 0.76, 0.95 and 0.92 respectively. CONCLUSION: DECT and mpMRI were useful in quantifying pancreatic fibrosis and grading the severity of CP. NIC was the most accurate marker.

4.
Magn Reson Med ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924176

ABSTRACT

PURPOSE: To fully characterize the orientation dependence of magnetization transfer (MT) and inhomogeneous MT (ihMT) measures in the whole white matter (WM), for both single-fiber and crossing-fiber voxels. METHODS: A characterization method was developed using the fiber orientation obtained from diffusion MRI (dMRI) with diffusion tensor imaging (DTI) and constrained spherical deconvolution. This allowed for characterization of the orientation dependence of measures in all of WM, regardless of the number of fiber orientation in a voxel. Furthermore, the orientation dependence inside 31 different WM bundles was characterized to evaluate the homogeneity of the effect. Variation of the results within and between-subject was assessed from a 12-subject dataset. RESULTS: Previous results for single-fiber voxels were reproduced and a novel characterization was produced in voxels of crossing fibers, which seems to follow trends consistent with single-fiber results. Heterogeneity of the orientation dependence across bundles was observed, but homogeneity within similar bundles was also highlighted. Differences in behavior between MT and ihMT measures, as well as the ratio and saturation versions of these, were noted. CONCLUSION: Orientation dependence characterization was proven possible over the entirety of WM. The vast range of effects and subtleties of the orientation dependence on MT measures showed the need for, but also the challenges of, a correction method.

5.
Magn Reson Med ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934408

ABSTRACT

PURPOSE: To develop a fast denoising framework for high-dimensional MRI data based on a self-supervised learning scheme, which does not require ground truth clean image. THEORY AND METHODS: Quantitative MRI faces limitations in SNR, because the variation of signal amplitude in a large set of images is the key mechanism for quantification. In addition, the complex non-linear signal models make the fitting process vulnerable to noise. To address these issues, we propose a fast deep-learning framework for denoising, which efficiently exploits the redundancy in multidimensional MRI data. A self-supervised model was designed to use only noisy images for training, bypassing the challenge of clean data paucity in clinical practice. For validation, we used two different datasets of simulated magnetization transfer contrast MR fingerprinting (MTC-MRF) dataset and in vivo DWI image dataset to show the generalizability. RESULTS: The proposed method drastically improved denoising performance in the presence of mild-to-severe noise regardless of noise distributions compared to previous methods of the BM3D, tMPPCA, and Patch2self. The improvements were even pronounced in the following quantification results from the denoised images. CONCLUSION: The proposed MD-S2S (Multidimensional-Self2Self) denoising technique could be further applied to various multi-dimensional MRI data and improve the quantification accuracy of tissue parameter maps.

6.
Neurooncol Pract ; 11(3): 307-318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737604

ABSTRACT

Background: The microstructural damage underlying compromise of white matter following treatment for pediatric brain tumors is unclear. We use multimodal imaging employing advanced diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) MRI methods to examine chronic microstructural damage to white matter in children and adolescents treated for pediatric brain tumor. Notably, MTI may be more sensitive to macromolecular content, including myelin, than DTI. Methods: Fifty patients treated for brain tumors (18 treated with surgery ± chemotherapy and 32 treated with surgery followed by cranial-spinal radiation; time from diagnosis to scan ~6 years) and 45 matched healthy children completed both MTI and DTI scans. Voxelwise and region-of-interest approaches were employed to compare white matter microstructure metrics (magnetization transfer ratio (MTR); DTI- fractional anisotropy [FA], radial diffusivity [RD], axial diffusivity [AD], mean diffusivity [MD]) between patients and healthy controls. Results: MTR was decreased across multiple white matter tracts in patients when compared to healthy children, P < .001. These differences were observed for both patients treated with radiation and those treated with only surgery, P < .001. We also found that children and adolescents treated for brain tumors exhibit decreased FA and increased RD/AD/MD compared to their healthy counterparts in several white matter regions, Ps < .02. Finally, we observed that MTR and DTI metrics were related to multiple white matter tracts in patients, Ps < .01, but not healthy control children. Conclusions: Our findings provide evidence that the white matter damage observed in patients years after treatment of pediatric posterior fossa tumors, likely reflects myelin disruption.

7.
Magn Reson Med ; 92(4): 1540-1555, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38703017

ABSTRACT

PURPOSE: Magnetization transfer saturation (MTsat) mapping is commonly used to examine the macromolecular content of brain tissue. This study compared variable flip angle (VFA) T1 mapping against compressed-sensing MP2RAGE (csMP2RAGE) T1 mapping for accelerating MTsat imaging. METHODS: VFA, MP2RAGE, and csMP2RAGE were compared against inversion-recovery T1 in an aqueous phantom at 3 T. The same 1-mm VFA, MP2RAGE, and csMP2RAGE protocols were acquired in 4 healthy subjects to compare T1 and MTsat. Bloch-McConnell simulations were used to investigate differences between the phantom and in vivo T1 results. Ten healthy controls were imaged twice with the csMP2RAGE MTsat protocol to quantify repeatability. RESULTS: The MP2RAGE and csMP2RAGE protocols were 13.7% and 32.4% faster than the VFA protocol, respectively. At these scan times, all approaches provided strong repeatability and accurate T1 times (< 5% difference) in the phantom, but T1 accuracy was more impacted by T2 for VFA than for MP2RAGE. In vivo, VFA estimated longer T1 times than MP2RAGE and csMP2RAGE. Simulations suggest that the differences in the T1 measured using VFA, MP2RAGE, and inversion recovery could be explained by the magnetization-transfer effects. In the test-retest experiment, we found that the csMP2RAGE has a minimum detectable change of 2.3% for T1 mapping and 7.8% for MTsat imaging. CONCLUSIONS: We demonstrated that MP2RAGE can be used in place of VFA T1 mapping in an MTsat protocol. Furthermore, a shorter scan time and high repeatability can be achieved using the csMP2RAGE sequence.


Subject(s)
Brain , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Adult , Male , Reproducibility of Results , Female , Image Processing, Computer-Assisted/methods , Algorithms , Brain Mapping/methods , Computer Simulation , Young Adult , Healthy Volunteers
8.
Magn Reson Med ; 92(4): 1670-1682, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38703021

ABSTRACT

PURPOSE: This study aims to investigate a multiparametric exchange proton approach using CEST and Z-spectrum analysis protons (ZAP) in human abdominal organs, focusing on tissue differentiation for a potential early biomarker of abnormality. Prior to human studies, CEST and ZAP effects were studied in phantoms containing exchange protons. METHODS: Phantoms composed of iopamidol and iohexol solutions with varying pH levels, along with 12 human subjects, were scanned on a clinical 3T MR scanner. Subsequent ZAP analyses employed a two-Lorentzian pool model to provide free and restricted apparent T 2 f , r ex $$ {\mathrm{T}}_{2\ \mathrm{f},\mathrm{r}}^{\mathrm{ex}} $$ , and their fractions for data acquired across a wide range of offset frequencies (±100 kHz or ± 800 ppm), while a narrower range (±7 ppm or ± 900 Hz) was used for CEST analysis to estimate magnetization transfer ratio asymmetry (MTRAsym) for exchange protons like hydroxyl (-OH), amine (-NH2), and amide (-NH), resonating ˜1, 2, and 3.5 ppm, respectively. Differences in ZAP metrics across various organs were statistically analyzed using one-way analysis of variance (ANOVA). RESULTS: The phantom study differentiated contrast agents based on resonance peaks detected from CEST analysis, while ZAP metrics showed sensitivity to pH variations. In human, ZAP metrics revealed significant differences in abdominal organs, with a subgroup study indicating changes in ZAP metrics due to the presence of gallstones. CONCLUSION: CEST and ZAP techniques demonstrated promise in specific CEST protons and wide range ZAP protons and identifying tissue-specific characteristics. The preliminary findings underscore the necessity for more extensive study involving a broader subject pool to potentially establish biomarkers for diseased states.


Subject(s)
Abdomen , Magnetic Resonance Imaging , Phantoms, Imaging , Protons , Humans , Magnetic Resonance Imaging/methods , Abdomen/diagnostic imaging , Male , Adult , Female , Hydrogen-Ion Concentration , Image Processing, Computer-Assisted/methods , Algorithms , Young Adult , Contrast Media/chemistry
9.
Magn Reson Med ; 92(4): 1658-1669, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38725197

ABSTRACT

PURPOSE: This study aims to assess ultrashort-TE magnetization transfer (UTE-MT) imaging of collagen degradation using an in vitro model of rotator cuff tendinopathy. METHODS: Thirty-six supraspinatus tendon specimens were divided into three groups and treated with 600 U collagenase (Group 1), 150 U collagenase (Group 2), and phosphate buffer saline (Group 3). UTE-MT imaging was performed to assess changes in macromolecular fraction (MMF), macromolecule transverse relaxation time (T2m), water longitudinal relaxation rate constant (R1m), the magnetization exchange rate from the macromolecular to water pool (Rm0 w) and from water to the macromolecular pool (Rm0 m), and magnetization transfer ratio (MTR) at baseline and following digestion and their differences between groups. Biochemical and histological studies were conducted to determine the extent of collagen degradation. Correlation analyses were performed with MMF, T2m, R1m, Rm0 w, Rm0 m, and MTR, respectively. Univariate and multivariate linear regression analyses were performed to evaluate combinations of UTE-MT parameters to predict collagen degradation. RESULTS: MMF, T2m, R1m, Rm0 m, and MTR decreased after digestion. MMF (r = -0.842, p < 0.001), MTR (r = -0.78, p < 0.001), and Rm0 m (r = -0.662, p < 0.001) were strongly negatively correlated with collagen degradation. The linear regression model of differences in MMF and Rm0 m before and after digestion explained 68.9% of collagen degradation variation in the tendon. The model of postdigestion in MMF and T2m and the model of MTR explained 54.2% and 52.3% of collagen degradation variation, respectively. CONCLUSION: This study highlighted the potential of UTE-MT parameters for evaluation of supraspinatus tendinopathy.


Subject(s)
Collagen , Magnetic Resonance Imaging , Rotator Cuff , Tendinopathy , Tendinopathy/diagnostic imaging , Tendinopathy/metabolism , Collagen/metabolism , Humans , Rotator Cuff/diagnostic imaging , Rotator Cuff/metabolism , Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Aged , Collagenases/metabolism , Tendons/diagnostic imaging , Tendons/metabolism , Image Processing, Computer-Assisted/methods
10.
Radiography (Lond) ; 30(4): 1085-1092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772065

ABSTRACT

PURPOSE: To assess the within-participant reliability and measurement error in the determination of MTR in the healthy human cervical spinal cord. METHODS AND MATERIALS: A total of twenty healthy controls (10 male, mean ± sd age: 33.9 ± 3.5 years, 10 females, mean ± sd age: 47.5 ± 14.4 years), with no family history of any neurological disorders or a contraindication to MRI scanning were recruited over a period of two months. Each participant was scanned twice with a 3T MRI scanner using standard MTI sequences. Spinal Cord Toolbox (v5.4) was used for image post-processing. Data were first segmented and then registered to a template and then MTR was computed. The within-participant coefficients of variation (CV%), single and average within-participants intraclass correlation coefficients (ICC) and Bland-Altman plots were determined for MT values over the volume between the 2nd and 5th cervical vertebrae for the total WM and for specific WM regions: dorsal column (DC), ventral column (VC) and lateral column (LC). RESULTS: MTR showed poor to excellent within-participant reliability for the total WM, DC, VC and LC with single/average ICC values of 0.03/0.06, 0.10/0.18, 0.39/0.75, and 0.001/0.002, respectively, and the CV% reported an acceptable variation with values less than 10%. The Bland-Altman plots showed good within-participant agreement between the scan-rescan values. CONCLUSION: This study demonstrates that clinical trials using MTI technique are feasible and shows that quantitative MTI can monitor tissue changes in degenerative WM patients. IMPLICATIONS FOR PRACTICE: MTI with its MTR index provide broad assessment of the integrity of white matter tissue and are being studied widely in brain as a diagnostic tool for the assessment of different neurological diseases.


Subject(s)
Cervical Cord , Magnetic Resonance Imaging , Humans , Male , Magnetic Resonance Imaging/methods , Female , Reproducibility of Results , Adult , Cervical Cord/diagnostic imaging , Middle Aged , Cervical Vertebrae/diagnostic imaging , Healthy Volunteers
11.
medRxiv ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38699343

ABSTRACT

Magnetization transfer MRI is sensitive to semi-solid macromolecules, including amyloid beta, and has previously been used to discriminate Alzheimer's disease (AD) patients from controls. Here, we fit an unconstrained 2-pool quantitative MT (qMT) model, i.e., without constraints on the longitudinal relaxation rate R 1 s of semi-solids, and investigate the sensitivity of the estimated parameters to amyloid accumulation in preclinical subjects. We scanned 15 cognitively normal volunteers, of which 9 were amyloid positive by [18F]Florbetaben PET. A 12 min hybrid-state qMT scan with an effective resolution of 1.24 mm isotropic and whole-brain coverage was acquired to estimate the unconstrained 2-pool qMT parameters. Group comparisons and correlations with Florbetaben PET standardized uptake value ratios were analyzed at the lobar level. We find that the exchange rate and semi-solid pool's R 1 s were sensitive to the amyloid concentration, while morphometric measures of cortical thickness derived from structural MRI were not. Changes in the exchange rate are consistent with previous reports in clinical AD, while changes in R 1 s have not been reported previously as its value is typically constrained in the literature. Our results demonstrate that qMT MRI may be a promising surrogate marker of amyloid beta without the need for contrast agents or radiotracers.

12.
Heliyon ; 10(8): e29779, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38699716

ABSTRACT

Central nervous system (CNS) tuberculosis is a post-primary form of tuberculosis. It has high mortality and morbidity rates despite early diagnosis and treatment. CNS tuberculosis can manifest as subacute/chronic meningitis, parenchymal tuberculous lesions, and spinal tuberculosis. Hematogenous spread of tuberculous bacilli to the brain results in the development of so called "rich foci" on the pial surface, ependyma, and grey-white matter junction. Rupture of these "rich foci" into the subarachnoid space triggers an intense granulomatous inflammatory reaction. Tuberculous meningitis can manifest as leptomeningitis or pachymeningitis. Intracranial parenchymal tuberculous lesions may present as tuberculoma, tuberculous abscess, cerebritis, rhombencephalitis, and encephalopathy, with atypical presentations not uncommon. Complications of CNS tuberculosis encompass hydrocephalus, syrinx formation, vasculitis, infarcts, neuritis, and enduring neurological deficits. Post-contrast 3D fluid-attenuated inversion recovery (FLAIR) and post-contrast T1 spin-echo sequences excel in detecting tuberculous meningitis compared to other conventional magnetic resonance imaging (MRI) sequences. In proton magnetic resonance spectroscopy (PMRS), the presence of a lipid peak at 1.3 ppm is indicative of tuberculous lesions. Magnetization transfer (MT) imaging enhances the detection of tuberculous lesions, as the magnetization transfer ratio (MTR) of tuberculous pathologies, owing to their high lipid content, is lower than that in bacterial or fungal pathologies and higher than that in viral pathologies. This review article delves into the various typical and atypical imaging presentations of CNS tuberculosis in MRI, along with recent advances in imaging techniques.

13.
J Affect Disord ; 356: 363-370, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38615848

ABSTRACT

BACKGROUND: Previous neuroimaging and pathological studies have found myelin-related abnormalities in bipolar disorder (BD), which prompted the use of magnetic resonance (MR) imaging technology sensitive to neuropathological changes to explore its neuropathological basis. We holistically investigated alterations in myelin within BD patients by inhomogeneous magnetization transfer (ihMT), which is sensitive and specific to myelin content. METHODS: Thirty-one BD and 42 healthy controls (HC) were involved. Four MR metrics, i.e., ihMT ratio (ihMTR), pseudo-quantitative ihMT (qihMT), magnetization transfer ratio and pseudo-quantitative magnetization transfer (qMT), were compared between groups using analysis methods based on whole-brain voxel-level and white matter regions of interest (ROI), respectively. RESULTS: The voxel-wise analysis showed significantly inter-group differences of ihMTR and qihMT in the corpus callosum. The ROI-wise analysis showed that ihMTR, qihMT, and qMT values in BD group were significantly lower than that in HC group in the genu and body of corpus callosum, left anterior limb of the internal capsule, left anterior corona radiate, and bilateral cingulum (p < 0.001). And the qihMT in genu of corpus callosum and right cingulum were negatively correlated with depressive symptoms in BD group. LIMITATIONS: This study is based on cross-sectional data and the sample size is limited. CONCLUSION: These findings suggest the reduced myelin content of anterior midline structure in the bipolar patients, which might be a critical pathophysiological feature of BD.


Subject(s)
Bipolar Disorder , Magnetic Resonance Imaging , Myelin Sheath , Humans , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/pathology , Female , Male , Adult , Myelin Sheath/pathology , Middle Aged , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , White Matter/diagnostic imaging , White Matter/pathology , Case-Control Studies , Brain/diagnostic imaging , Brain/pathology
14.
J Bone Miner Res ; 39(6): 707-716, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38591788

ABSTRACT

Ultrashort echo time (UTE) MRI can quantify the major proton pool densities in cortical bone, including total (TWPD), bound (BWPD), and pore water (PWPD) proton densities, as well as the macromolecular proton density (MMPD), associated with the collagen content, which is calculated using macromolecular fraction (MMF) from UTE magnetization transfer (UTE-MT) modeling. This study aimed to investigate the differences in water and collagen contents in tibial cortical bone, between female osteopenia (OPe) patients, osteoporosis (OPo) patients, and young participants (Young). Being postmenopausal and above 55 yr old were the inclusion criteria for OPe and OPo groups. The tibial shaft of 14 OPe (72.5 ± 6.8 yr old), 31 OPo (72.0 ± 6.4 yr old), and 31 young subjects (28.0 ± 6.1 yr old) were scanned using a knee coil on a clinical 3T scanner. Basic UTE, inversion recovery UTE, and UTE-MT sequences were performed. Investigated biomarkers were compared between groups using Kruskal-Wallis test. Spearman's correlation coefficients were calculated between the TH DXA T-score and UTE-MRI results. MMF, BWPD, and MMPD were significantly lower in OPo patients than in the young group, whereas T1, TWPD, and PWPD were significantly higher in OPo patients. The largest OPo/Young average percentage differences were found in MMF (41.9%), PWPD (103.5%), and MMPD (64.0%). PWPD was significantly higher (50.7%), while BWPD was significantly lower (16.4%) in OPe than the Young group on average. MMF was found to be significantly lower (27%) in OPo patients compared with OPe group. T1, MMF, TWPD, PWPD, and MMPD values significantly correlated with the TH DXA T-scores (provided by the patients and only available for OPe and OPo patients). DXA T-score showed the highest correlations with PWPD (R = 0.55) and MMF (R = 0.56) values. TWPD, PWPD, and MMF estimated using the UTE-MRI sequences were recommended to evaluate individuals with OPe and OPo.


Ultrashort echo time (UTE) is an MRI technique that can quantify the water and collagen content of cortical bone. Water in the bone can be found residing in pores (pore water) or bound to the bone matrix (bound water). We investigated the differences in water and collagen contents of tibial cortical bone between female osteopenia patients, osteoporosis patients, and young participants. Bound water and collagen contents were significantly lower in osteoporosis patients than in the young group, whereas total water and pore water contents were significantly higher in osteoporosis patients. Pore water was significantly higher, while bound water was significantly lower in osteopenia than in the Young group. Collagen content was found to be significantly lower in osteoporosis patients compared with the osteopenia group. The estimated water and collagen contents were significantly correlated with the TH bone densitometry measures in the patients.


Subject(s)
Bone Diseases, Metabolic , Collagen , Magnetic Resonance Imaging , Osteoporosis , Tibia , Humans , Female , Tibia/diagnostic imaging , Tibia/pathology , Tibia/metabolism , Osteoporosis/diagnostic imaging , Osteoporosis/metabolism , Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/metabolism , Adult , Aged , Collagen/metabolism , Middle Aged , Cortical Bone/diagnostic imaging , Cortical Bone/pathology , Cortical Bone/metabolism , Water/metabolism , Porosity
15.
NMR Biomed ; : e5151, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38583871

ABSTRACT

Magnetization transfer spectroscopy relies heavily on the robust determination of T 1 $$ {T}_1 $$ relaxation times of nuclei participating in metabolic exchange. Challenges arise due to the use of surface RF coils for transmission (high B 1 + $$ {B}_1^{+} $$ variation) and the broad resonance band of most X nuclei. These challenges are particularly pronounced when fast T 1 $$ {T}_1 $$ mapping methods, such as the dual-angle method, are employed. Consequently, in this work, we develop resonance offset and B 1 + $$ {B}_1^{+} $$ robust excitation RF pulses for 31P magnetization transfer spectroscopy at 7T through ensemble-based time-optimal control. In our approach, we introduce a cost functional for designing robust pulses, incorporating the full Bloch equations as constraints, which are solved using symmetric operator splitting techniques. The optimal control design of the RF pulses developed demonstrates improved accuracy, desired phase properties, and reduced RF power when applied to dual-angle T 1 $$ {T}_1 $$ mapping, thereby improving the precision of exchange-rate measurements, as demonstrated in a preclinical in vivo study quantifying brain creatine kinase activity.

16.
Magn Reson Imaging Clin N Am ; 32(2): 221-231, 2024 May.
Article in English | MEDLINE | ID: mdl-38555138

ABSTRACT

Multiple advanced imaging methods for multiple sclerosis (MS) have been in investigation to identify new imaging biomarkers for early disease detection, predicting disease prognosis, and clinical trial endpoints. Multiple techniques probing different aspects of tissue microstructure (ie, advanced diffusion imaging, magnetization transfer, myelin water imaging, magnetic resonance spectroscopy, glymphatic imaging, and perfusion) support the notion that MS is a global disease with microstructural changes evident in normal-appearing white and gray matter. These global changes are likely better predictors of disability compared with lesion load alone. Emerging techniques in glymphatic and molecular imaging may improve understanding of pathophysiology and emerging treatments.


Subject(s)
Magnetic Resonance Imaging , Multiple Sclerosis , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
17.
Neuroimage ; 291: 120588, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537765

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN. METHODS: This study included 30 PD subjects and 50 healthy controls (HCs) scanned at 3T. PENCIL and MTC images were acquired. NM volume in the SN pars compacta (SNpc), normalized image contrast (Cnorm), and contrast-to-noise ratio (CNR) were calculated. The change of NM volume in the SNpc with age was analyzed using the HC data. A group analysis compared differences between PD subjects and HCs. Receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculations were used to evaluate the diagnostic performance of NM volume and CNR in the SNpc. RESULTS: PENCIL provided similar visualization and structural information of NM compared to MTC. In HCs, PENCIL showed higher NM volume in the SNpc than MTC, but this difference was not observed in PD subjects. PENCIL had higher CNR, while MTC had higher Cnorm. Both methods revealed a similar pattern of NM volume in SNpc changes with age. There were no significant differences in AUCs between NM volume in SNpc measured by PENCIL and MTC. Both methods exhibited comparable diagnostic performance in this regard. CONCLUSIONS: PENCIL imaging provided improved CNR compared to MTC and showed similar diagnostic performance for differentiating PD subjects from HCs. The major advantage is PENCIL has rapid whole-brain coverage and, when using STAGE imaging, offers a one-stop quantitative assessment of tissue properties.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Substantia Nigra/diagnostic imaging , Pars Compacta , Magnetic Resonance Imaging/methods , Melanins
18.
Neuroradiology ; 66(5): 839-846, 2024 May.
Article in English | MEDLINE | ID: mdl-38441573

ABSTRACT

PURPOSE: Degenerative cervical myelopathy (DCM) is a common cause of spinal cord dysfunction. In this study, we explored the potential of magnetization transfer ratio (MTR) for evaluating the structural integrity of spinal cord tracts in patients with clinically significant DCM. METHODS: Fifty-three patients with DCM and 41 patients with cervical radiculopathy were evaluated using high-resolution cervical spinal cord magnetic resonance imaging (MRI), which included the magnetization transfer technique. MRI data were analyzed with the Spinal Cord Toolbox (v5.5); MTR values in each spinal tract were calculated and compared between groups after correction for patient age and sex. Correlations between MTR values and patients' clinical disability rate were also evaluated. RESULTS: A statistically significant reduction in the average MTR of the spinal cord white matter, as well as the MTR of the ventral columns and lateral funiculi, was revealed in the DCM group (adjusted p < 0.01 for all comparisons). Furthermore, reductions in MTR values in the fasciculus cuneatus, spinocerebellar, rubrospinal, and reticulospinal tracts were found in patients with DCM (adjusted p < 0.01 for all comparisons). Positive correlations between the JOA score and the MTR within the ventral columns of the spinal cord (R = 0.38, adjusted p < 0.05) and the ventral spinocerebellar tract (R = 0.41, adjusted p < 0.05) were revealed. CONCLUSION: The findings of our study indicate that demyelination in patients with DCM primarily affects the spinal tracts of the extrapyramidal system, and the extent of these changes is related to the severity of the condition.


Subject(s)
Cervical Cord , Spinal Cord Compression , Spinal Cord Diseases , White Matter , Humans , Spinal Cord Diseases/diagnostic imaging , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Magnetic Resonance Imaging/methods , Cervical Cord/diagnostic imaging , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/pathology
19.
J Neurotrauma ; 41(9-10): 1223-1239, 2024 May.
Article in English | MEDLINE | ID: mdl-38318802

ABSTRACT

A significant problem in the diagnosis and management of traumatic spinal cord injury (tSCI) is the heterogeneity of secondary injury and the prediction of neurological outcome. Imaging biomarkers specific to myelin loss and inflammation after tSCI would enable detailed assessment of the pathophysiological processes underpinning secondary damage to the cord. Such biomarkers could be used to biologically stratify injury severity and better inform prognosis for neurological recovery. While much work has been done to establish magnetic resonance imaging (MRI) biomarkers for SCI in animal models, the relationship between imaging findings and the underlying pathology has been difficult to discern in human tSCI because of the paucity of human spinal cord tissue. We utilized post-mortem spinal cords from individuals who had a tSCI to examine this relationship by performing ex vivo MRI scans before histological analysis. We investigated the correlation between the histological distribution of myelin loss and inflammatory cells in the injured spinal cord and a number of myelin and inflammation-sensitive MRI measures: myelin water fraction (MWF), inhomogeneous magnetization transfer ratio (ihMTR), and diffusion tensor and diffusion kurtosis imaging-derived fractional anisotropy (FA) and axial, radial, and mean diffusivity (AD, RD, MD). The histological features were analyzed by staining with Luxol Fast Blue (LFB) for myelin lipids and Class II major histocompatibility complex (Class II MHC) and CD68 for microglia and macrophages. Both MWF and ihMTR were strongly correlated with LFB staining for myelin, supporting the use of both as biomarkers for myelin loss after SCI. A decrease in ihMTR was also correlated with the presence of Class II MHC positive immune cells. FA and RD correlated with both Class II MHC and CD68 and may therefore be useful biomarkers for inflammation after tSCI. Our work demonstrates the utility of advanced MRI techniques sensitive to biological tissue damage after tSCI, which is an important step toward using these MRI techniques in the clinic to aid in decision-making.


Subject(s)
Biomarkers , Magnetic Resonance Imaging , Spinal Cord Injuries , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/pathology , Spinal Cord Injuries/metabolism , Humans , Magnetic Resonance Imaging/methods , Male , Biomarkers/analysis , Biomarkers/metabolism , Female , Middle Aged , Aged , Adult , Diffusion Tensor Imaging/methods , Myelin Sheath/pathology , Myelin Sheath/metabolism , Aged, 80 and over , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Spinal Cord/metabolism
20.
Magn Reson Med Sci ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38382996

ABSTRACT

PURPOSE: Neuromelanin is visualized by optimizing the conditions of longitudinal relaxation (T1)-weighted imaging (T1WI). Although it was originally developed in 2D imaging, 3D imaging has been also reported, and T1WI sequences with magnetization transfer (MT) pulses are now widely used in 3D gradient echo (GRE) sequences. In this study, we assert that the use of spectral presaturation with inversion recovery (SPIR) may also be useful as an alternative to MT pulses, and we optimize SPIR and compare it with MT. METHODS: Neuromelanin images with MT pulse and SPIR (flip angles [FAs] = 19º, 22º, and 25º) were acquired from 30 healthy volunteers. To achieve the same acquisition time of 5 min, the slab thickness of the MT images was less than 1/3 of those of the SPIR images; the acquisition areas for MT and SPIR were the brainstem and the whole brain, respectively. Visual and quantitative evaluation was performed and compared on the four sequences acquired for the substantia nigra pars compacta (SNc) and the locus coeruleus (LC). For visual assessment, we used the mean score from a 3-point scale by two evaluators. For quantitative evaluation, the contrast ratios of SNc and LC were calculated in comparison with the background tissue signal. RESULTS: In visual assessments, the mean scores of the SPIR FA19º and FA22º images were better than others in the SNc. Regarding LC, the SPIR FA22º image yielded the best mean score. In quantitative evaluations, the MT image was significantly lower than the other three images in SNc. Regarding LC, there were no significant differences among the four acquired images (MT and SPIR FA19º, FA22º, and FA25º). CONCLUSIONS: Detection of neuromelanin in SNc and LC was improved by the use of SPIR compared to MT pulse in 3D neuromelanin imaging.

SELECTION OF CITATIONS
SEARCH DETAIL