Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Mol Divers ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097550

ABSTRACT

Density Functional Theory (DFT) is extensively used in theoretical and computational chemistry to study molecular and crystal properties across diverse fields, including quantum chemistry, materials physics, catalysis, biochemistry, and surface science. Despite advances in DFT hardware and software for optimized geometries, achieving consensus in molecular structure comparisons with experimental counterparts remains a challenge. This difficulty is exacerbated by the lack of automated bond length comparison tools, resulting in labor-intensive and error-prone manual processes. To address these challenges, we propose MolGC, a Molecular Geometry Comparator algorithm that automates the comparison of optimized geometries from different theoretical levels. MolGC calculates the mean absolute error (MAE) of bond lengths by integrating data from various DFT software. It provides interactive and customizable visualization of geometries, enabling users to explore different views for enhanced analysis. In addition, it saves MAE computations for further analysis and offers a comprehensive statistical summary of the results. MolGC effectively addresses complex graph labeling challenges, ensuring accurate identification and categorization of bonds in diverse chemical structures. It achieves a 98.91% average rate in correct bond label assignments on an antibiotics dataset, showcasing its effectiveness for comparing molecular bond lengths across geometries of varying complexity and size. The executable file and software resources for running MolGC can be downloaded from https://github.com/AbimaelGP/MolGC/tree/main .

2.
BMC Bioinformatics ; 25(1): 168, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678218

ABSTRACT

This study investigates the impact of spatio- temporal correlation using four spatio-temporal models: Spatio-Temporal Poisson Linear Trend Model (SPLTM), Poisson Temporal Model (TMS), Spatio-Temporal Poisson Anova Model (SPAM), and Spatio-Temporal Poisson Separable Model (STSM) concerning food security and nutrition in Africa. Evaluating model goodness of fit using the Watanabe Akaike Information Criterion (WAIC) and assessing bias through root mean square error and mean absolute error values revealed a consistent monotonic pattern. SPLTM consistently demonstrates a propensity for overestimating food security, while TMS exhibits a diverse bias profile, shifting between overestimation and underestimation based on varying correlation settings. SPAM emerges as a beacon of reliability, showcasing minimal bias and WAIC across diverse scenarios, while STSM consistently underestimates food security, particularly in regions marked by low to moderate spatio-temporal correlation. SPAM consistently outperforms other models, making it a top choice for modeling food security and nutrition dynamics in Africa. This research highlights the impact of spatial and temporal correlations on food security and nutrition patterns and provides guidance for model selection and refinement. Researchers are encouraged to meticulously evaluate the biases and goodness of fit characteristics of models, ensuring their alignment with the specific attributes of their data and research goals. This knowledge empowers researchers to select models that offer reliability and consistency, enhancing the applicability of their findings.


Subject(s)
Food Security , Africa , Food Security/methods , Spatio-Temporal Analysis , Humans , Computer Simulation , Poisson Distribution
3.
JMIR Ment Health ; 11: e45754, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551630

ABSTRACT

BACKGROUND: Recommender systems help narrow down a large range of items to a smaller, personalized set. NarraGive is a first-in-field hybrid recommender system for mental health recovery narratives, recommending narratives based on their content and narrator characteristics (using content-based filtering) and on narratives beneficially impacting other similar users (using collaborative filtering). NarraGive is integrated into the Narrative Experiences Online (NEON) intervention, a web application providing access to the NEON Collection of recovery narratives. OBJECTIVE: This study aims to analyze the 3 recommender system algorithms used in NarraGive to inform future interventions using recommender systems for lived experience narratives. METHODS: Using a recently published framework for evaluating recommender systems to structure the analysis, we compared the content-based filtering algorithm and collaborative filtering algorithms by evaluating the accuracy (how close the predicted ratings are to the true ratings), precision (the proportion of the recommended narratives that are relevant), diversity (how diverse the recommended narratives are), coverage (the proportion of all available narratives that can be recommended), and unfairness (whether the algorithms produce less accurate predictions for disadvantaged participants) across gender and ethnicity. We used data from all participants in 2 parallel-group, waitlist control clinical trials of the NEON intervention (NEON trial: N=739; NEON for other [eg, nonpsychosis] mental health problems [NEON-O] trial: N=1023). Both trials included people with self-reported mental health problems who had and had not used statutory mental health services. In addition, NEON trial participants had experienced self-reported psychosis in the previous 5 years. Our evaluation used a database of Likert-scale narrative ratings provided by trial participants in response to validated narrative feedback questions. RESULTS: Participants from the NEON and NEON-O trials provided 2288 and 1896 narrative ratings, respectively. Each rated narrative had a median of 3 ratings and 2 ratings, respectively. For the NEON trial, the content-based filtering algorithm performed better for coverage; the collaborative filtering algorithms performed better for accuracy, diversity, and unfairness across both gender and ethnicity; and neither algorithm performed better for precision. For the NEON-O trial, the content-based filtering algorithm did not perform better on any metric; the collaborative filtering algorithms performed better on accuracy and unfairness across both gender and ethnicity; and neither algorithm performed better for precision, diversity, or coverage. CONCLUSIONS: Clinical population may be associated with recommender system performance. Recommender systems are susceptible to a wide range of undesirable biases. Approaches to mitigating these include providing enough initial data for the recommender system (to prevent overfitting), ensuring that items can be accessed outside the recommender system (to prevent a feedback loop between accessed items and recommended items), and encouraging participants to provide feedback on every narrative they interact with (to prevent participants from only providing feedback when they have strong opinions).


Subject(s)
Mental Health Recovery , Humans , Neon , Algorithms , Software , Narration
4.
Math Biosci Eng ; 21(3): 4485-4500, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38549337

ABSTRACT

Facial age recognition has been widely used in real-world applications. Most of current facial age recognition methods use deep learning to extract facial features to identify age. However, due to the high dimension features of faces, deep learning methods might extract a lot of redundant features, which is not beneficial for facial age recognition. To improve facial age recognition effectively, this paper proposed the deep manifold learning (DML), a combination of deep learning and manifold learning. In DML, deep learning was used to extract high-dimensional facial features, and manifold learning selected age-related features from these high-dimensional facial features for facial age recognition. Finally, we validated the DML on Multivariate Observations of Reactions and Physical Health (MORPH) and Face and Gesture Recognition Network (FG-NET) datasets. The results indicated that the mean absolute error (MAE) of MORPH is 1.60 and that of FG-NET is 2.48. Moreover, compared with the state of the art facial age recognition methods, the accuracy of DML has been greatly improved.


Subject(s)
Deep Learning , Neural Networks, Computer
5.
Hum Brain Mapp ; 45(3): e26632, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38379519

ABSTRACT

Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.


Subject(s)
Alzheimer Disease , Schizophrenia , Humans , Workflow , Brain/diagnostic imaging , Brain/pathology , Schizophrenia/diagnostic imaging , Schizophrenia/pathology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Machine Learning , Magnetic Resonance Imaging/methods
6.
Micromachines (Basel) ; 14(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37374803

ABSTRACT

OBJECTIVE: Devices for cuffless blood pressure (BP) measurement have become increasingly widespread in recent years. Non-invasive continuous BP monitor (BPM) devices can diagnose potential hypertensive patients at an early stage; however, these cuffless BPMs require more reliable pulse wave simulation equipment and verification methods. Therefore, we propose a device to simulate human pulse wave signals that can test the accuracy of cuffless BPM devices using pulse wave velocity (PWV). METHODS: We design and develop a simulator capable of simulating human pulse waves comprising an electromechanical system to simulate the circulatory system and an arm model-embedded arterial phantom. These parts form a pulse wave simulator with hemodynamic characteristics. We use a cuffless device for measuring local PWV as the device under test to measure the PWV of the pulse wave simulator. We then use a hemodynamic model to fit the cuffless BPM and pulse wave simulator results; this model can rapidly calibrate the cuffless BPM's hemodynamic measurement performance. RESULTS: We first used multiple linear regression (MLR) to generate a cuffless BPM calibration model and then investigated differences between the measured PWV with and without MLR model calibration. The mean absolute error of the studied cuffless BPM without the MLR model is 0.77 m/s, which improves to 0.06 m/s when using the model for calibration. The measurement error of the cuffless BPM at BPs of 100-180 mmHg is 1.7-5.99 mmHg before calibration, which decreases to 0.14-0.48 mmHg after calibration. CONCLUSION: This study proposes a design of a pulse wave simulator based on hemodynamic characteristics and provides a standard performance verification method for cuffless BPMs that requires only MLR modeling on the cuffless BPM and pulse wave simulator. The pulse wave simulator proposed in this study can be used to quantitively assess the performance of cuffless BPMs. The proposed pulse wave simulator is suitable for mass production for the verification of cuffless BPMs. As cuffless BPMs become increasingly widespread, this study can provide performance testing standards for cuffless devices.

7.
Infect Dis Model ; 8(1): 228-239, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36776734

ABSTRACT

Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.

8.
Ophthalmol Sci ; 3(1): 100222, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36325476

ABSTRACT

Purpose: Two novel deep learning methods using a convolutional neural network (CNN) and a recurrent neural network (RNN) have recently been developed to forecast future visual fields (VFs). Although the original evaluations of these models focused on overall accuracy, it was not assessed whether they can accurately identify patients with progressive glaucomatous vision loss to aid clinicians in preventing further decline. We evaluated these 2 prediction models for potential biases in overestimating or underestimating VF changes over time. Design: Retrospective observational cohort study. Participants: All available and reliable Swedish Interactive Thresholding Algorithm Standard 24-2 VFs from Massachusetts Eye and Ear Glaucoma Service collected between 1999 and 2020 were extracted. Because of the methods' respective needs, the CNN data set included 54 373 samples from 7472 patients, and the RNN data set included 24 430 samples from 1809 patients. Methods: The CNN and RNN methods were reimplemented. A fivefold cross-validation procedure was performed on each model, and pointwise mean absolute error (PMAE) was used to measure prediction accuracy. Test data were stratified into categories based on the severity of VF progression to investigate the models' performances on predicting worsening cases. The models were additionally compared with a no-change model that uses the baseline VF (for the CNN) and the last-observed VF (for the RNN) for its prediction. Main Outcome Measures: PMAE in predictions. Results: The overall PMAE 95% confidence intervals were 2.21 to 2.24 decibels (dB) for the CNN and 2.56 to 2.61 dB for the RNN, which were close to the original studies' reported values. However, both models exhibited large errors in identifying patients with worsening VFs and often failed to outperform the no-change model. Pointwise mean absolute error values were higher in patients with greater changes in mean sensitivity (for the CNN) and mean total deviation (for the RNN) between baseline and follow-up VFs. Conclusions: Although our evaluation confirms the low overall PMAEs reported in the original studies, our findings also reveal that both models severely underpredict worsening of VF loss. Because the accurate detection and projection of glaucomatous VF decline is crucial in ophthalmic clinical practice, we recommend that this consideration is explicitly taken into account when developing and evaluating future deep learning models.

9.
Ophthalmol Sci ; 2(1): 100097, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36246178

ABSTRACT

Purpose: To assess whether the predictive accuracy of machine learning algorithms using Kalman filtering for forecasting future values of global indices on perimetry can be enhanced by adding global retinal nerve fiber layer (RNFL) data and whether model performance is influenced by the racial composition of the training and testing sets. Design: Retrospective, longitudinal cohort study. Participants: Patients with open-angle glaucoma (OAG) or glaucoma suspects enrolled in the African Descent and Glaucoma Evaluation Study or Diagnostic Innovation in Glaucoma Study. Methods: We developed a Kalman filter (KF) with tonometry and perimetry data (KF-TP) and another KF with tonometry, perimetry, and global RNFL data (KF-TPO), comparing these models with one another and with 2 linear regression (LR) models for predicting mean deviation (MD) and pattern standard deviation values 36 months into the future for patients with OAG and glaucoma suspects. We also compared KF model performance when trained on individuals of European and African descent and tested on patients of the same versus the other race. Main Outcome Measures: Predictive accuracy (percentage of MD values forecasted within the 95% repeatability interval) differences among the models. Results: Among 362 eligible patients, the mean ± standard deviation age at baseline was 71.3 ± 10.4 years; 196 patients (54.1%) were women; 202 patients (55.8%) were of European descent, and 139 (38.4%) were of African descent. Among patients with OAG (n = 296), the predictive accuracy for 36 months in the future was higher for the KF models (73.5% for KF-TP, 71.2% for KF-TPO) than for the LR models (57.5%, 58.0%). Predictive accuracy did not differ significantly between KF-TP and KF-TPO (P = 0.20). If the races of the training and testing set patients were aligned (versus nonaligned), the mean absolute prediction error of future MD improved 0.39 dB for KF-TP and 0.48 dB for KF-TPO. Conclusions: Adding global RNFL data to existing KFs minimally improved their predictive accuracy. Although KFs attained better predictive accuracy when the races of the training and testing sets were aligned, these improvements were modest. These findings will help to guide implementation of KFs in clinical practice.

10.
Build Environ ; 222: 109440, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35937047

ABSTRACT

Air distribution is an effective engineering measure to fight against respiratory infectious diseases like COVID-19. Ventilation indices are widely used to indicate the airborne infection risk of respiratory infectious diseases due to the practical convenience. This study investigates the relationships between the ventilation indices and airborne infection risk to suggest the proper ventilation indices for the evaluation of airborne infection risk control performance of air distribution. Besides the commonly used ventilation indices of the age of air (AoA), air change effectiveness (ACE), and contaminant removal effectiveness (CRE), this study introduces two ventilation indices, i.e., the air utilization effectiveness (AUE) and contaminant dispersion index (CDI). CFD simulations of a hospital ward and a classroom served by different air distributions, including mixing ventilation, displacement ventilation, stratum ventilation and downward ventilation, are validated to calculate the ventilation indices and airborne infection risk. A three-step correlation analysis based on Spearman's rank correlation coefficient, Pearson correlation coefficient, and goodness of fit and a min-max normalization-based error analysis are developed to qualitatively and quantitatively test the validity of ventilation indices respectively. The results recommend the integrated index of AUE and CDI to indicate the overall airborne infection risk, and CDI to indicate the local airborne infection risk respectively regardless of the effects of air distribution, supply airflow rate, infectivity intensity, room configuration and occupant distribution. This study contributes to airborne transmission control of infectious respiratory diseases with air distribution.

11.
JID Innov ; 2(3): 100107, 2022 May.
Article in English | MEDLINE | ID: mdl-35990535

ABSTRACT

Atopic dermatitis (AD) is a chronic, itchy skin condition that affects 15-20% of children but may occur at any age. It is estimated that 16.5 million US adults (7.3%) have AD that initially began at age >2 years, with nearly 40% affected by moderate or severe disease. Therefore, a quantitative measurement that tracks the evolution of AD severity could be extremely useful in assessing patient evolution and therapeutic efficacy. Currently, SCOring Atopic Dermatitis (SCORAD) is the most frequently used measurement tool in clinical practice. However, SCORAD has the following disadvantages: (i) time consuming-calculating SCORAD usually takes about 7-10 minutes per patient, which poses a heavy burden on dermatologists and (ii) inconsistency-owing to the complexity of SCORAD calculation, even well-trained dermatologists could give different scores for the same case. In this study, we introduce the Automatic SCORAD, an automatic version of the SCORAD that deploys state-of-the-art convolutional neural networks that measure AD severity by analyzing skin lesion images. Overall, we have shown that Automatic SCORAD may prove to be a rapid and objective alternative method for the automatic assessment of AD, achieving results comparable with those of human expert assessment while reducing interobserver variability.

12.
Bull Malays Math Sci Soc ; 45(Suppl 1): 461-475, 2022.
Article in English | MEDLINE | ID: mdl-35729955

ABSTRACT

This paper presents a transfer function time series forecast model for COVID-19 deaths using reported COVID-19 case positivity counts as the input series. We have used deaths and case counts data reported by the Center for Disease Control for the USA from July 24 to December 31, 2021. To demonstrate the effectiveness of the proposed transfer function methodology, we have compared some summary results of forecast errors of the fitted transfer function model to those of an adequate autoregressive integrated moving average model and observed that the transfer function model achieved better forecast results than the autoregressive integrated moving average model. Additionally, separate autoregressive integrated moving average models for COVID-19 cases and deaths are also reported.

13.
Comput Struct Biotechnol J ; 20: 2909-2920, 2022.
Article in English | MEDLINE | ID: mdl-35765650

ABSTRACT

Optimization of the fermentation process for recombinant protein production (RPP) is often resource-intensive. Machine learning (ML) approaches are helpful in minimizing the experimentations and find vast applications in RPP. However, these ML-based tools primarily focus on features with respect to amino-acid-sequence, ruling out the influence of fermentation process conditions. The present study combines the features derived from fermentation process conditions with that from amino acid-sequence to construct an ML-based model that predicts the maximal protein yields and the corresponding fermentation conditions for the expression of target recombinant protein in the Escherichia coli periplasm. Two sets of XGBoost classifiers were employed in the first stage to classify the expression levels of the target protein as high (>50 mg/L), medium (between 0.5 and 50 mg/L), or low (<0.5 mg/L). The second-stage framework consisted of three regression models involving support vector machines and random forest to predict the expression yields corresponding to each expression-level-class. Independent tests showed that the predictor achieved an overall average accuracy of 75% and a Pearson coefficient correlation of 0.91 for the correctly classified instances. Therefore, our model offers a reliable substitution of numerous trial-and-error experiments to identify the optimal fermentation conditions and yield for RPP. It is also implemented as an open-access webserver, PERISCOPE-Opt (http://periscope-opt.erc.monash.edu).

14.
Comput Struct Biotechnol J ; 20: 2372-2380, 2022.
Article in English | MEDLINE | ID: mdl-35664223

ABSTRACT

Poor efficacy of some anthelmintics and rising concerns about the widespread drug resistance have highlighted the need for new drug discovery. The parasitic nematode Haemonchus contortus is an important model organism widely used for studies of drug resistance and drug screening with the current gold standard being the motility assay. We applied a deep learning approach Mask R-CNN for analysing motility videos containing varying rates of motile worms and compared it to other commonly used algorithms with different levels of complexity, namely the Wiggle Index and the Wide Field-of-View Nematode Tracking Platform. Mask R-CNN consistently outperformed the other algorithms in terms of the detection of worms as well as the precision of motility forecasts, having a mean absolute percentage error of 7.6% and a mean absolute error of 5.6% for the detection and motility forecasts, respectively. Using Mask R-CNN for motility assays confirmed the common problem with algorithms that use non-maximum suppression in detecting overlapping objects, which negatively impacts the overall precision. The use of intersect over union as a measure of the classification of motile / non-motile instances had an overall accuracy of 89%, indicating that it is a viable alternative to previously used methods based on movement characteristics, such as body bends. In comparison to the existing methods evaluated here, Mask R-CNN performed better and we anticipate that this method will broaden the number of possible approaches to video analysis of worm motility.

15.
Data Brief ; 42: 108240, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35592769

ABSTRACT

In practice, field measurements often show missing data due to several dynamic factors. However, the complete data about a given environment is key to characterizing the radio features of the terrain for a high quality of service. In order to address this problem, field data were collected from a dense urban environment, and the missing parameters were predicted using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) algorithm. The field measurement was taken around Victoria Island and Ikoyi in Lagos, Nigeria. The test equipment comprises a Global Positioning System (GPS) and a Fourth Generation (4G) Long Term Evolution (LTE) modem equipped with a 2×2 MIMO antenna, employing 64 Quadrature Amplitude Modulation (QAM). The Modem was installed on a personal computer and assembled inside a test vehicle driven at a near-constant speed of 30 km/h to minimize possible Doppler effects. Specifically, the test equipment records 67 LTE parameters at 1 s intervals, including the time and coordinates of the mobile station. Thirty-two parameters were logged at 42,498 instances corresponding to 11 h, 48 min and 18 s of data logging on the mobile terminal. Sixteen important 4G LTE parameters were extracted and analyzed. The statistical errors were calculated when the missing values were exempted from the analyses and when the missing values were incorporated using the PCHIP algorithm. In particular, this update paper estimated the missing values of critical network parameters using the PCHIP algorithm, which was not covered in the original article. Also, the error statistics between the data (histograms) and the corresponding probability density function curves for the measured data with missing values and the data filled with the missing values using the PCHIP algorithm are derived. Additionally, the accuracy of the PCHIP algorithm was analysed using standard statistical error analysis. More network parameters have been tested in the update article than in the original article, presenting only basic statistics and fewer network parameters. Overall, results indicate that only the parameters which measure the throughput values follow the half-normal distribution while others follow the normal distribution.

16.
MethodsX ; 9: 101733, 2022.
Article in English | MEDLINE | ID: mdl-35637693

ABSTRACT

Machine learning methods were considered efficient in identifying single nucleotide polymorphisms (SNP) underlying a trait of interest. This study aimed to construct predictive models using machine learning algorithms, to identify loci that best explain the variance in milk traits of dairy cattle. Further objectives involved validating the results by comparison with reported relevant regions and retrieving the pathways overrepresented by the genes flanking relevant SNPs. Regression models using XGBoost (XGB), LightGBM (LGB), and Random Forest (RF) algorithms were trained using estimated breeding values for milk production (EBVM), milk fat content (EBVF) and milk protein content (EBVP) as phenotypes and genotypes on 40417 SNPs as predictor variables. To evaluate their efficiency, metrics for actual vs. predicted values were determined in validation folds (XGB and LGB) and out-of-bag data (RF). Less than 4500 relevant SNPs were retrieved for each trait. Among the genes flanking them, signaling and transmembrane transporter activities were overrepresented. The models trained:•Predicted breeding values for animals not included in the dataset.•Were efficient in identifying a subset of SNPs explaining phenotypic variation. The results obtained using XGB and LGB algorithms agreed with previous results. Therefore, the method proposed could be applied for future association studies on milk traits.

17.
Environ Sci Pollut Res Int ; 29(45): 68232-68246, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35538339

ABSTRACT

Malaria is an endemic disease in India and targeted to eliminate by the year 2030. The present study is aimed at understanding the epidemiological patterns of malaria transmission dynamics in Assam and Arunachal Pradesh followed by the development of a malaria prediction model using monthly climate factors. A total of 144,055 cases in Assam during 2011-2018 and 42,970 cases in Arunachal Pradesh were reported during the 2011-2019 period observed, and Plasmodium falciparum (74.5%) was the most predominant parasite in Assam, whereas Plasmodium vivax (66%) in Arunachal Pradesh. Malaria transmission showed a strong seasonal variation where most of the cases were reported during the monsoon period (Assam, 51.9%, and Arunachal Pradesh, 53.6%). Similarly, the malaria incidence was highest in the male population in both states (Asam, 55.75%, and Arunachal Pradesh, 51.43%), and the disease risk is also higher among the > 15 years age group (Assam, 61.7%, and Arunachal Pradesh, 67.9%). To predict the malaria incidence, Bayesian structural time series (BSTS) and Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX) models were implemented. A statistically significant association between malaria cases and climate variables was observed. The most influencing climate factors are found to be maximum and mean temperature with a 6-month lag, and it showed a negative association with malaria incidence. The BSTS model has shown superior performance on the optimal auto-correlated dataset (OAD) which contains auto-correlated malaria cases, cross-correlated climate variables besides malaria cases in both Assam (RMSE, 0.106; MAE, 0.089; and SMAPE, 19.2%) and Arunachal Pradesh (RMSE, 0.128; MAE, 0.122; and SMAPE, 22.6%) than the SARIMAX model. The findings suggest that the predictive performance of the BSTS model is outperformed, and it may be helpful for ongoing intervention strategies by governmental and nongovernmental agencies in the northeast region to combat the disease effectively.


Subject(s)
Malaria , Bayes Theorem , Humans , India/epidemiology , Malaria/epidemiology , Male , Time Factors , Weather
18.
Indian J Ophthalmol ; 70(3): 740-748, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35225507

ABSTRACT

This review article attempts to evaluate the accuracy of intraocular lens power calculation formulae in short eyes. A thorough literature search of PubMed, Embase, Cochrane Library, Science Direct, Scopus, and Web of Science databases was conducted for articles published over the past 21 years, up to July 2021. The mean absolute error was compared by using weighted mean difference, whereas odds ratio was used for comparing the percentage of eyes with prediction error within ±0.50 diopter (D) and ±1.0 D of target refraction. Statistical heterogeneity among studies was analyzed by using Chi-square test and I2 test. Fifteen studies including 2,395 eyes and 11 formulae (Barrett Universal II, Full Monte method, Haigis, Hill-RBF, Hoffer Q, Holladay 1, Holladay 2, Olsen, Super formula, SRK/T, and T2) were included. Although the mean absolute error (MAE) of Barrett Universal II was found to be the lowest, there was no statistically significant difference in any of the comparisons. The median absolute error (MedAE) of Barrett Universal II was the lowest (0.260). Holladay 1 and Hill-RBF had the highest percentage of eyes within ±0.50 D and ±1.0 D of target refraction, respectively. Yet their comparison with the rest of the formulae did not yield statistically significant results. Thus, to conclude, in the present meta-analysis, although lowest MAE and MedAE were found for Barrett Universal II and the highest percentage of eyes within ±0.50 D and ±1.0 D of target refraction was found for Holladay 1 and Hill-RBF, respectively, none of the formulae was found to be statistically superior over the other in eyes with short axial length.


Subject(s)
Lenses, Intraocular , Phacoemulsification , Axial Length, Eye , Biometry/methods , Humans , Lens Implantation, Intraocular , Optics and Photonics , Refraction, Ocular , Retrospective Studies
19.
Res Diagn Interv Imaging ; 1: 100003, 2022 Mar.
Article in English | MEDLINE | ID: mdl-37520010

ABSTRACT

Objectives: 1) To develop a deep learning (DL) pipeline allowing quantification of COVID-19 pulmonary lesions on low-dose computed tomography (LDCT). 2) To assess the prognostic value of DL-driven lesion quantification. Methods: This monocentric retrospective study included training and test datasets taken from 144 and 30 patients, respectively. The reference was the manual segmentation of 3 labels: normal lung, ground-glass opacity(GGO) and consolidation(Cons). Model performance was evaluated with technical metrics, disease volume and extent. Intra- and interobserver agreement were recorded. The prognostic value of DL-driven disease extent was assessed in 1621 distinct patients using C-statistics. The end point was a combined outcome defined as death, hospitalization>10 days, intensive care unit hospitalization or oxygen therapy. Results: The Dice coefficients for lesion (GGO+Cons) segmentations were 0.75±0.08, exceeding the values for human interobserver (0.70±0.08; 0.70±0.10) and intraobserver measures (0.72±0.09). DL-driven lesion quantification had a stronger correlation with the reference than inter- or intraobserver measures. After stepwise selection and adjustment for clinical characteristics, quantification significantly increased the prognostic accuracy of the model (0.82 vs. 0.90; p<0.0001). Conclusions: A DL-driven model can provide reproducible and accurate segmentation of COVID-19 lesions on LDCT. Automatic lesion quantification has independent prognostic value for the identification of high-risk patients.

20.
Clin Exp Ophthalmol ; 49(9): 1009-1017, 2021 12.
Article in English | MEDLINE | ID: mdl-34550645

ABSTRACT

BACKGROUND: To investigate the refractive outcomes of second-eye adjustment (SEA) methods in different intraocular lens (IOL) power calculation formulas for second eye following bilateral sequential cataract surgery. METHODS: This retrospective consecutive case-series study included 234 eyes from 234 patients who underwent bilateral sequential phacoemulsification and implantation of enVista MX60 in a hospital setting. Postoperative refraction outcomes calculated by standard formulas (SRK/T and Barrett Universal II, BUII) with SEA method were compared with those calculated by an artificial intelligence-based IOL power calculation formula (PEARL DGS) under second eye enhancement (SEE) method. The median absolute error (MedAE), mean absolute error (MAE) and percentage prediction errors (PE) of eyes within ±0.25 diopters (D), ±0.50 D, ±0.75 D and ± 1.00 D were determined. RESULTS: Overall, the improvement in MedAE after SEA was significant for PEARL DGS (p < 0.01), SRK/T (p < 0.001) and BUII (p = 0.031), which increased from 74.36, 71.37, and 77.78% to 83.33, 80.34, and 79.49% of eyes within a PE of ±0.50 D, respectively. For first eyes with a medium axial length (22-26 mm), PEARL DGS with SEE had the lowest MedAE (0.21 D). For a first-eye MAE over 0.50 D, SEA method led to significant improvement in the second eye (p < 0.01). Interocular axis length differences exceeding 0.3 mm were associated with weaker effects using SEA in the studied formulas (p > 0.05). CONCLUSIONS: Either SEA method with SRK/T and BUII formulas or second-eye enhancement method based on the PEARL DGS formula can improve postoperative refractive outcomes in second eye.


Subject(s)
Artificial Intelligence , Lenses, Intraocular , Axial Length, Eye , Biometry , Humans , Lens Implantation, Intraocular , Optics and Photonics , Retrospective Studies , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL