Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.093
Filter
1.
Front Cell Dev Biol ; 12: 1470981, 2024.
Article in English | MEDLINE | ID: mdl-39355122

ABSTRACT

Correct chromosome segregation is essential to preserve genetic integrity. The two protein kinases, Aurora B and its meiotic homolog Aurora C, regulate attachments between chromosomal kinetochores and microtubules, thereby contributing to the accuracy of the chromosome segregation process. Here we performed a detailed examination of the localization and activity of Aurora B/C kinases, their partner Incenp and the kinetochore target Hec1, during the second meiotic division in mouse oocytes. We found that a majority of Aurora B and C changed their localization from the outer kinetochore region of chromosomes at prometaphase II to an inner central region localized between sister centromeres at metaphase II. Depletion of the Aurora B/C pool at the inner central region using the haspin kinase inhibitor 5-iodotubercidin resulted in chromosome misalignments at the metaphase II stage. To further understand the role of the Aurora B/C pool at the central region, we examined the behaviour of single chromatids, that lack a central Aurora B/C pool but retain Aurora B/C at the outer kinetochores. We found that kinetochore-microtubule attachments at single chromatids were corrected at both prometaphase II and metaphase II stages, but that single chromatids compared to paired chromatids were more prone to misalignments following treatment of oocytes with the Aurora B/C inhibitory drugs AZD1152 and GSK1070916. We conclude that the Aurora B/C pool at the inner central region stabilizes chromosome alignment during metaphase II arrest, while Aurora B/C localized at the kinetochore assist in re-establishing chromosome positioning at the metaphase plate if alignment is lost. Collaboratively these two pools prevent missegregation and aneuploidy at the second meiotic division in mammalian oocytes.

2.
Toxicol Appl Pharmacol ; 492: 117118, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362309

ABSTRACT

Bisphenol A (BPA) is among the extensively researched environmental endocrine-disrupting chemicals (EDCs), and its utilization is restricted owing to the detrimental impacts it has on human health. Bisphenol AP (BPAP) is one of the alternatives to BPA, but the influence of BPAP on human health has not been elucidated. The objective of the current research was to determine the influence of BPAP exposure on the in vitro maturation of mouse oocytes and to explore its potential reproductive toxicity. BPAP exposure was found to inhibit polar body extrusion during mouse oocyte maturation, resulting in an arrest at the metaphase I stage of meiosis. Exposure to BPAP led to sustained activation of BubR1, preventing the degradation of both Securin and Cyclin B1. Mechanistically, BPAP exposure disrupts spindle assembly and chromosome alignment. Levels of acetylated α-tubulin were significantly elevated in BPAP-treated oocytes, reflecting decreased spindle stability. Exposure to BPAP also induced DNA damage and impaired DNA damage repair. In addition, BPAP exposure altered histone modification levels. In summary, this investigation suggests that exposure to BPAP can influence cytoskeletal assembly, interfere with cell cycle progression, induce DNA damage, alter histone modifications, and ultimately impede oocyte meiotic maturation. This investigation enhances understanding of the impact of bisphenol analogs on female gametes, underscoring that BPAP cannot be considered a reliable replacement for BPA.

3.
Genome Biol Evol ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39391964

ABSTRACT

Killer meiotic drivers (KMDs) are a class of selfish genetic elements that bias inheritance in their favor by destroying meiotic progeny that do not carry them. How KMDs evolve is not well understood. In the fission yeast Schizosaccharomyces pombe, the largest gene family, known as the wtf genes, is a KMD family that causes intraspecific hybrid sterility. Here, we investigate how wtf genes evolve using long-read-based genome assemblies of 31 distinct S. pombe natural isolates, which encompass the known genetic diversity of S. pombe. Our analysis, involving nearly 1,000 wtf genes in these isolates, yields a comprehensive portrayal of the intraspecific diversity of wtf genes. Leveraging single-nucleotide polymorphisms in adjacent unique sequences, we pinpoint wtf-gene-containing loci that have recently undergone gene conversion events and infer their pre-gene-conversion state. These events include the revival of wtf pseudogenes, lending support to the notion that gene conversion plays a role in preserving this gene family from extinction. Moreover, our investigation reveals that solo long terminal repeats (LTRs) of retrotransposons, frequently found near wtf genes, can act as recombination arms, influencing the upstream regulatory sequences of wtf genes. Additionally, our exploration of the outer boundaries of wtf genes uncovers a previously unrecognized type of directly oriented repeats flanking wtf genes. These repeats may have facilitated the early expansion of the wtf gene family in S. pombe. Our findings enhance the understanding of the mechanisms influencing the evolution of this KMD gene family.

4.
Genes (Basel) ; 15(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39336750

ABSTRACT

Structural Maintenance of Chromosomes (SMC) complexes are an evolutionary conserved protein family. In most eukaryotes, three SMC complexes have been characterized, as follows: cohesin, condensin, and SMC5/6 complexes. These complexes are involved in a plethora of functions, and defects in SMC genes can lead to an increased risk of chromosomal abnormalities, infertility, and cancer. To investigate the evolution of SMC complex genes in mammals, we analyzed their selective patterns in an extended phylogeny. Signals of positive selection were identified for condensin NCAPG, for two SMC5/6 complex genes (SMC5 and NSMCE4A), and for all cohesin genes with almost exclusive meiotic expression (RAD21L1, REC8, SMC1B, and STAG3). For the latter, evolutionary rates correlate with expression during female meiosis, and most positively selected sites fall in intrinsically disordered regions (IDRs). Our results support growing evidence that IDRs are fast evolving, and that they most likely contribute to adaptation through modulation of phase separation. We suggest that the natural selection signals identified in SMC complexes may be the result of different selective pressures: a host-pathogen arms race in the condensin and SMC5/6 complexes, and an intragenomic conflict for meiotic cohesin genes that is similar to that described for centromeres and telomeres.


Subject(s)
Adenosine Triphosphatases , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , DNA-Binding Proteins , Evolution, Molecular , Multiprotein Complexes , Selection, Genetic , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Multiprotein Complexes/genetics , Animals , Adenosine Triphosphatases/genetics , Humans , DNA-Binding Proteins/genetics , Meiosis/genetics , Phylogeny
5.
Reprod Domest Anim ; 59(9): e14715, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39262106

ABSTRACT

G-protein-coupled receptor kinase 2 (GRK2) interacts with Gßγ and Gαq, subunits of G-protein alpha, to regulate cell signalling. The second messenger inositol trisphosphate, produced by activated Gαq, promotes calcium release from the endoplasmic reticulum (ER) and regulates maturation-promoting factor (MPF) activity. This study aimed to investigate the role of GRK2 in MPF activity during the meiotic maturation of porcine oocytes. A specific inhibitor of GRK2 (ßi) was used in this study. The present study showed that GRK2 inhibition increased the percentage of oocyte arrest at the metaphase I (MI) stage (control: 13.84 ± 0.95%; ßi: 31.30 ± 4.18%), which resulted in the reduction of the maturation rate (control: 80.36 ± 1.94%; ßi: 65.40 ± 1.14%). The level of phospho-GRK2 decreased in the treated group, suggesting that GRK2 activity was reduced upon GRK2 inhibition. Furthermore, the addition of ßi decreased Ca2+ release from the ER. The protein levels of cyclin B and cyclin-dependent kinase 1 were higher in the treatment group than those in the control group, indicating that GRK2 inhibition prevented a decrease in MPF activity. Collectively, GRK2 inhibition induced meiotic arrest at the MI stage in porcine oocytes by preventing a decrease in MPF activity, suggesting that GRK2 is essential for oocyte meiotic maturation in pigs.


Subject(s)
Calcium , G-Protein-Coupled Receptor Kinase 2 , Meiosis , Oocytes , Animals , Oocytes/drug effects , Meiosis/drug effects , G-Protein-Coupled Receptor Kinase 2/metabolism , Female , Calcium/metabolism , Swine , Maturation-Promoting Factor/metabolism , In Vitro Oocyte Maturation Techniques/veterinary
6.
Mol Genet Genomics ; 299(1): 84, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223386

ABSTRACT

Male infertility is a complex multifactorial reproductive disorder with highly heterogeneous phenotypic presentations. Azoospermia is a medically non-manageable cause of male infertility affecting ∼1% of men. Precise etiology of azoospermia is not known in approximately three-fourth of the cases. To explore the genetic basis of azoospermia, we performed whole exome sequencing in two non-obstructive azoospermia affected siblings from a consanguineous Pakistani family. Bioinformatic filtering and segregation analysis of whole exome sequencing data resulted in the identification of a rare homozygous missense variant (c.962G>C, p. Arg321Thr) in YTHDC2, segregating with disease in the family. Structural analysis of the missense variant identified in our study and two previously reported functionally characterized missense changes (p. Glu332Gln and p. His327Arg) in mice showed that all these three variants may affect Mg2+ binding ability and helicase activity of YTHDC2. Collectively, our genetic analyses and experimental observations revealed that missense variant of YTHDC2 can induce azoospermia in humans. These findings indicate the important role of YTHDC2 deficiency for azoospermia and will provide important guidance for genetic counseling of male infertility.


Subject(s)
Azoospermia , Exome Sequencing , Homozygote , Mutation, Missense , Pedigree , Siblings , Adult , Animals , Humans , Male , Mice , Azoospermia/genetics , Azoospermia/pathology , Consanguinity , Infertility, Male/genetics , Infertility, Male/pathology , Pakistan , RNA Helicases/genetics
7.
Biochem Biophys Res Commun ; 734: 150602, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243677

ABSTRACT

The cytoskeleton of mammal oocytes provides structural support to the plasma membrane and contributes to critical cellular dynamic processes such as nuclear positioning, germinal vesicle breakdown, spindle orientation, chromosome segregation, polar body extrusion, and transmembrane signaling pathways. The ERM family (ezrin, radixin and moesin) well known as membrane-cytoskeletal crosslinkers play a crucial role in organizing plasma membrane domains through their capacity to interact with transmembrane proteins and the underlying cytoskeleton. Recent works mainly focused on the structural analysis of the ERM family members and their binding partners, together with multiple functions in cell mitosis, have significantly advanced our understanding of the importance of membrane-cytoskeletal interactions. In the present study, we documented that p-ERM was expressed and localized at cortical and nucleus during mouse oocyte meiosis. p-ERM and microfilaments were colocalized from GV to MII during mouse oocyte maturation. After being treated with cytochalasin B (CB), the F-actin was disassembled. Meanwhile, p-ERM exhibited a diffuse cytoplasmic distribution and no special staining was detected in either the oocyte membrane or condensed chromosomes. p-ERM depletion by trim-away caused the meiotic procedure arrest with a significantly lower polar body extrusion rate. Collectively, these data demonstrate that the subcellular distribution of p-ERM is correlated with microfilaments. Meanwhile, the p-ERM contributes to the first polar extrusion but does not regulate the microfilament assembly.

8.
Food Chem Toxicol ; 193: 115024, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341490

ABSTRACT

Methylmercury chloride (MMC) is a persistent heavy metal contaminant that can bioaccumulate in humans via the food chain, exerting detrimental effects on health. Nevertheless, the specific influence of MMC on oocyte meiotic maturation has yet to be elucidated. This research demonstrated that MMC exposure during the in vitro cultivation of mouse oocytes did not influence germinal vesicle breakdown but markedly decreased oocyte maturation rates. Subsequent analysis indicated that MMC exposure resulted in aberrant spindle morphology and disorganized chromosome alignment, alongside continuous activation of the spindle assembly checkpoint (SAC). However, MMC exposure didn't alter the localization pattern of microtubule-organizing center-associated proteins. MMC exposure considerably diminished the acetylation level of α-tubulin, signifying reduced microtubule stability. Additionally, MMC exposure disrupted the dynamic alterations of F-actin. MMC exposure didn't affect mitochondrial localization, mitochondrial membrane potential, adenosine triphosphate content or the concentrations of reactive oxygen species. Nonetheless, MMC exposure triggered DNA damage and modified histone modification levels. Consequently, the defects in oocyte maturation induced by MMC exposure can be attributed to impaired cytoskeleton dynamics and DNA damage. This study offers the first comprehensive elucidation of the negative impacts of MMC on oocyte maturation, highlighting the potential reproductive health risks associated with MMC exposure.

9.
J Hered ; 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39212686

ABSTRACT

Sex-ratio meiotic drivers are selfish genes or gene complexes that bias the transmission of sex chromosomes resulting in skewed sex ratios. Existing theoretical models have suggested the maintenance of a four-chromosome equilibrium (with driving and standard X and suppressing and susceptible Y) in a cyclic dynamic, studies of natural populations have failed to capture this pattern. Although there are several plausible explanations for this lack of cycling, interference from autosomal suppressors has not been studied using a theoretical population genetic framework even though autosomal suppressors and Y-linked suppressors coexist in natural populations of some species. In this study, we use a simulation-based approach to investigate the influence of autosomal suppressors on the cycling of sex chromosomes. Our findings demonstrate that the presence of an autosomal suppressor can hinder the invasion of a Y-linked suppressor under some parameter space, thereby impeding the cyclic dynamics, or even the invasion of Y-linked suppression. Even when a Y-linked suppressor invades, the presence of an autosomal suppressor can prevent cycling. Our study demonstrates the potential role of autosomal suppressors in preventing sex chromosome cycling and provides insights into the conditions and consequences of maintaining both Y-linked and autosomal suppressors.

10.
Biochem Biophys Res Commun ; 739: 150600, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39191147

ABSTRACT

INTRODUCTION: The aberrant up-regulation of meiotic nuclear division 1 (MND1) in somatic cells is considered as one of the driving factors of oncogenesis, whereas its expression and role in breast invasive cancer (BRCA) remain unclear. Hence, this study embarked on a comprehensive evaluation of MND1 across various cancers and identified its roles in BRCA. METHODS: Based on publicly available databases, including but not limited to UCSC Xena, TCGA, GTEx, GEO, STRING, GeneMANIA, and CancerSEA, we evaluated the expression patterns, genomic features, and biological functions of MND1 from a pan-cancer viewpoint and delved into the implications of MND1 in the prognosis and treatment of BRCA. Further molecular biology experiments were undertaken to identify the role of MND1 in proliferation, migration, and apoptosis in BRCA cells. RESULTS: Elevated levels of MND1 were notably observed in a wide array of tumor types, especially in BRCA, COAD, HNSC, LIHC, LUAD, LUSC, STAD, and UCEC. Elevated MND1 expression was markedly associated with shortened OS in several tumors, including BRCA (HR = 1.52 [95%CI, 1.10-2.09], P = 0.011). The up-regulation of MND1 in BRCA was validated in external cohorts and clinical samples. Survival analyses demonstrated that elevated MND1 expression was associated with decreased survival for patients with BRCA. Co-expressed genes of MND1 were identified, and subsequent pathway analyses based on significantly associated genes indicated that MND1 plays key roles in DNA replication, cell cycle regulation, and DNA damage repair. The observed abnormal elevation and activation of MND1 led to increased proliferation and migration, along with decreased apoptosis in BRCA cells. CONCLUSIONS: MND1 emerges as a promising biomarker for diagnostic and therapeutic targeting in various cancers, including BRCA. The abnormal up-regulation and activation of MND1 are linked to carcinogenesis and poor prognosis among BRCA patients, which may be attributed to its involvement in HR-dependent ALT, warranting further scrutiny.

11.
Biochem Soc Trans ; 52(4): 1777-1784, 2024 08 28.
Article in English | MEDLINE | ID: mdl-39149984

ABSTRACT

The non-Mendelian transmission of sex chromosomes during gametogenesis carries significant implications, influencing sex ratios and shaping evolutionary dynamics. Here we focus on known mechanisms that drive non-Mendelian inheritance of X chromosomes during spermatogenesis and their impact on population dynamics in species with different breeding systems. In Drosophila and mice, X-linked drivers targeting Y-bearing sperm for elimination or limiting their fitness, tend to confer unfavourable effects, prompting the evolution of suppressors to mitigate their impact. This leads to a complex ongoing evolutionary arms race to maintain an equal balance of males and females. However, in certain insects and nematodes with XX/X0 sex determination, the preferential production of X-bearing sperm through atypical meiosis yields wild-type populations with highly skewed sex ratios, suggesting non-Mendelian transmission of the X may offer selective advantages in these species. Indeed, models suggest X-meiotic drivers could bolster population size and persistence under certain conditions, challenging the conventional view of their detrimental effects. Furthering our understanding of the diverse mechanisms and evolutionary consequences of non-Mendelian transmission of X chromosomes will provide insights into genetic inheritance, sex determination, and population dynamics, with implications for fundamental research and practical applications.


Subject(s)
Population Dynamics , Sex Ratio , X Chromosome , Animals , X Chromosome/genetics , Male , Female , Sex Determination Processes , Spermatogenesis/genetics , Breeding , Mice , Meiosis/genetics , Drosophila/genetics , Humans , Biological Evolution
12.
Zool Res ; 45(5): 1037-1047, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39147718

ABSTRACT

Serine protease 50 (PRSS50/TSP50) is highly expressed in spermatocytes. Our study investigated its role in testicular development and spermatogenesis. Initially, PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes. To further explore this, we generated PRSS50 knockout ( Prss50 -/- ) mice ( Mus musculus), which exhibited abnormal spermatid nuclear compression and reduced male fertility. Furthermore, dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50 -/- mice, accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells. Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and elevated levels of MAP kinase phosphatase 3 (MKP3), a specific ERK antagonist, potentially accounting for testicular dysplasia in adolescent Prss50 -/- mice. Taken together, these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis, with the MKP3/ERK signaling pathway playing a significant role in this process.


Subject(s)
MAP Kinase Signaling System , Meiosis , Mice, Knockout , Spermatozoa , Animals , Male , Mice , Meiosis/physiology , Spermatozoa/physiology , Spermatogenesis/physiology , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/metabolism , Testis/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
13.
J Adv Res ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142440

ABSTRACT

INTRODUCTION: Homologous recombination repair during meiosis is essential for the exchange of genetic information between sister chromosomes, underpinning spermatogenesis and, consequently, fertility. The disruption of this process can lead to infertility, highlighting the importance of identifying the molecular actors involved. OBJECTIVES: This study aims to elucidate the role of the E3 ubiquitin ligase Rnf126 in spermatogenesis and its impact on fertility, particularly through its involvement in meiotic homologous recombination repair. METHODS: We used heterozygous and homozygous Rnf126 deletion models in mouse testes to examine the consequences on testicular health, sperm count, and the process of spermatogenesis. Additionally, we explored the association between RNF126 gene missense variants and nonobstructive male infertility in patients, with a focus on their functional impact on the protein's ubiquitin ligase activity. RESULTS: Rnf126 deletion led to testicular atrophy, disrupted seminiferous tubule structure, reduced sperm count, and spermatogenesis arrest at meiotic prophase I. Furthermore, male mice exhibited impaired homologous recombination repair and increased apoptosis within the seminiferous tubules. We identified four missense variants of the RNF126 (V68M, R241H, E261A, D253N) associated with male infertility. Specifically, the E261A and D253N variants, located in the RING domain, directly compromised the E3 ubiquitin ligase activity of RNF126. CONCLUSION: Our findings demonstrate the pivotal role of RNF126 in maintaining spermatogenesis and fertility, offering insights into the molecular mechanisms underlying male infertility. The identified RNF126 variants present novel targets for diagnostic and therapeutic strategies in treating nonobstructive male infertility.

14.
Methods Mol Biol ; 2818: 133-145, 2024.
Article in English | MEDLINE | ID: mdl-39126471

ABSTRACT

Oogenesis is the central process required to produce viable oocytes in female mammals. It is initiated during embryonic development, and it involves the specification of primordial germ cells (PGCs) and progresses through the activation of the meiotic program, reaching a crucial phase in prophase I before pausing at diplotene around the time of birth. The significance of meiosis, particularly the prophase I stage, cannot be overstated, as it plays a pivotal role in ensuring the formation of healthy gametes, a prerequisite for successful reproduction. While research has explored meiosis across various organisms, understanding how environmental factors, including radiation, drugs, endocrine disruptors, reproductive age, or diet, influence this complex developmental process remains incomplete. In this chapter, we describe an ex vivo culture method to investigate meiotic prophase I and beyond and the disruption of oogenesis by external factors. Using this methodology, it is possible to evaluate the effects of individual xenobiotics by administering chemicals at specific points during oogenesis. This culture technique was optimized to study the effects of two selected endocrine disruptors (vinclozolin and MEHP), demonstrating that vinclozolin exposure delayed meiotic differentiation and MEHP exposure reduced follicle size. This approach also opens avenues for future applications, involving the exploration of established or novel pharmaceutical substances and their influence on essential events during prophase I, such as homologous recombination and chromosome segregation. These processes collectively dictate the ultimate fitness of oocytes, with potential implications for factors relevant to the reproductive age and fertility.


Subject(s)
Meiosis , Ovary , Animals , Female , Mice , Ovary/cytology , Meiosis/drug effects , Oogenesis/drug effects , Oocytes/cytology , Oocytes/drug effects , Meiotic Prophase I/drug effects , Endocrine Disruptors/pharmacology , Oxazoles/pharmacology , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects
15.
Genetics ; 228(2)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39196789

ABSTRACT

Hybrid male sterility is one of the fastest evolving intrinsic reproductive barriers between recently isolated populations. A leading explanation for the evolution of hybrid male sterility involves genomic conflicts with meiotic drivers in the male germline. There are, however, few examples directly linking meiotic drive to hybrid sterility. In this study, we report that the Sex-Ratio chromosome of Drosophila pseudoobscura, which causes X-chromosome drive within the USA subspecies, causes near-complete male sterility when it is moved into the genetic background of the Bogota subspecies. In addition, we show that this new form of sterility is genetically distinct from the sterility of F1 hybrid males in crosses between USA males and Bogota females. Our observations provide a tractable study system where noncryptic drive within species is transformed into strong hybrid sterility between very young subspecies.


Subject(s)
Drosophila , Hybridization, Genetic , Infertility, Male , Meiosis , Animals , Drosophila/genetics , Drosophila/physiology , Meiosis/genetics , Male , Female , Infertility, Male/genetics , X Chromosome/genetics , Sex Ratio
16.
Adv Sci (Weinh) ; 11(33): e2402412, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38958533

ABSTRACT

Meiosis is a specialized cell division process that generates gametes for sexual reproduction. However, the factors and underlying mechanisms involving meiotic progression remain largely unknown, especially in humans. Here, it is first showed that HSF5 is associated with human spermatogenesis. Patients with a pathogenic variant of HSF5 are completely infertile. Testicular histologic findings in the patients reveal rare postmeiotic germ cells resulting from meiotic prophase I arrest. Hsf5 knockout (KO) mice confirms that the loss of HSF5 causes defects in meiotic recombination, crossover formation, sex chromosome synapsis, and sex chromosome inactivation (MSCI), which may contribute to spermatocyte arrest at the late pachytene stage. Importantly, spermatogenic arrest can be rescued by compensatory HSF5 adeno-associated virus injection into KO mouse testes. Mechanistically, integrated analysis of RNA sequencing and chromatin immunoprecipitation sequencing data revealed that HSF5 predominantly binds to promoters of key genes involved in crossover formation (e.g., HFM1, MSH5 and MLH3), synapsis (e.g., SYCP1, SYCP2 and SYCE3), recombination (TEX15), and MSCI (MDC1) and further regulates their transcription during meiotic progression. Taken together, the study demonstrates that HSF5 modulates the transcriptome to ensure meiotic progression in humans and mice. These findings will aid in genetic diagnosis of and potential treatments for male infertility.


Subject(s)
Infertility, Male , Meiotic Prophase I , Mice, Knockout , Spermatogenesis , Male , Animals , Mice , Humans , Spermatogenesis/genetics , Infertility, Male/genetics , Meiotic Prophase I/genetics , Disease Models, Animal , Meiosis/genetics , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Adult , Azoospermia/congenital
17.
Am J Physiol Cell Physiol ; 327(3): C778-C789, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39069826

ABSTRACT

Tranexamic acid (TXA) is widely used among young women because of its ability to whiten skin and treat menorrhagia. Nevertheless, its potential effects on oocyte maturation and quality have not yet been clearly clarified. Melatonin (MT) is an endogenous hormone released by the pineal gland and believed to protect cells from oxidative stress injury. In the present study, we used an in vitro maturation model to investigate the toxicity of TXA and the protective role of MT in mouse oocytes. Compared with the control group, the TXA-exposed group had significantly lower nuclear maturation (57.72% vs. 94.08%, P < 0.001) and early embryo cleavage rates (38.18% vs. 87.66%, P < 0.001). Further study showed that spindle organization (52.56% vs. 18.77%, P < 0.01) and chromosome alignment (33.23% vs. 16.66%, P < 0.01) were also disrupted after TXA treatment. Mechanistically, we have demonstrated that TXA induced early apoptosis of oocytes (P < 0.001) by raising the level of reactive oxygen species (P < 0.001), which was consistent with an increase in mitochondrial damage (P < 0.01). Fortunately, all these effects except the spindle defect were successfully rescued by an appropriate level of MT. Collectively, our findings indicate that MT could partially reverse TXA-induced oocyte quality deterioration in mice by effectively improving mitochondrial function and reducing oxidative stress-mediated apoptosis.NEW & NOTEWORTHY Tranexamic acid is increasingly used to whiten skin, reverse dermal damages, and treat heavy menstrual bleeding in young women. However, its potential toxicity in mammalian oocytes is still unclear. Our study revealed that tranexamic acid exposure impaired the mouse oocyte quality and subsequent embryo development. Meanwhile, melatonin has been found to exert beneficial effects in reducing tranexamic acid-induced mitochondrial dysfunction and oxidative stress.


Subject(s)
Apoptosis , Melatonin , Oocytes , Oxidative Stress , Reactive Oxygen Species , Tranexamic Acid , Animals , Melatonin/pharmacology , Tranexamic Acid/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Female , Mice , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Oxidative Stress/drug effects , In Vitro Oocyte Maturation Techniques/methods , Antioxidants/pharmacology , Oogenesis/drug effects
18.
Bioessays ; 46(9): e2400056, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39072829

ABSTRACT

X chromosome centromeric drive may explain the prevalence of polycystic ovary syndrome and contribute to oocyte aneuploidy, menopause, and other conditions. The mammalian X chromosome may be vulnerable to meiotic drive because of X inactivation in the female germline. The human X pericentromeric region contains genes potentially involved in meiotic mechanisms, including multiple SPIN1 and ZXDC paralogs. This is consistent with a multigenic drive system comprising differential modification of the active and inactive X chromosome centromeres in female primordial germ cells and preferential segregation of the previously inactivated X chromosome centromere to the polar body at meiosis I. The drive mechanism may explain differences in X chromosome regulation in the female germlines of the human and mouse and, based on the functions encoded by the genes in the region, the transmission of X pericentromeric genetic or epigenetic variants to progeny could contribute to preeclampsia, autism, and differences in sexual differentiation.


Subject(s)
Centromere , Chromosomes, Human, X , Meiosis , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Centromere/genetics , Chromosomes, Human, X/genetics , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Prevalence , X Chromosome Inactivation/genetics
19.
Curr Biol ; 34(17): 3845-3854.e4, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39067449

ABSTRACT

Selfish genetic elements drive in meiosis to distort their transmission ratio and increase their representation in gametes, violating Mendel's law of segregation. The two established paradigms for meiotic drive, gamete killing and biased segregation, are fundamentally different. In gamete killing, typically observed with male meiosis, selfish elements sabotage gametes that do not contain them. By contrast, killing is predetermined in female meiosis, and selfish elements bias their segregation to the single surviving gamete (i.e., the egg in animal meiosis). Here, we show that a selfish element on mouse chromosome 2, Responder to drive 2 (R2d2), drives using a hybrid mechanism in female meiosis, incorporating elements of both killing and biased segregation. We propose that if R2d2 is destined for the polar body, it manipulates segregation to sabotage the egg by causing aneuploidy, which is subsequently lethal in the embryo, ensuring that surviving progeny preferentially contain R2d2. In heterozygous females, R2d2 orients randomly on the metaphase spindle but lags during anaphase and preferentially remains in the egg, regardless of its initial orientation. Thus, the egg genotype is either euploid with R2d2 or aneuploid with both homologs of chromosome 2, with only the former generating viable embryos. Consistent with this model, R2d2 heterozygous females produce eggs with increased aneuploidy for chromosome 2, increased embryonic lethality, and increased transmission of R2d2. In contrast to typical gamete killing of sisters produced as daughter cells in a single meiosis, R2d2 prevents production of any viable gametes from meiotic divisions in which it should have been excluded from the egg.


Subject(s)
Meiosis , Animals , Mice , Female , Male , Ovum/physiology , Chromosome Segregation , Aneuploidy
20.
Curr Biol ; 34(16): 3820-3829.e5, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39079532

ABSTRACT

Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination.1 The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules,2 but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3BUBR1 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3BUBR1.3,4 Here we reveal the distinct functions of Mad2 and Mad3BUBR1 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3BUBR1 associates with the TOGL1 domain of Stu1CLASP, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3BUBR1-Stu1CLASP to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3BUBR1-Stu1CLASP are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.


Subject(s)
Cell Cycle Proteins , Chromosome Segregation , M Phase Cell Cycle Checkpoints , Meiosis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Spindle Apparatus , Meiosis/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Chromosome Segregation/physiology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , M Phase Cell Cycle Checkpoints/physiology , Spindle Apparatus/metabolism , Spindle Apparatus/physiology , Mad2 Proteins/metabolism , Mad2 Proteins/genetics , Microtubules/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL