Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930247

ABSTRACT

The paper presents the study concerning the preparation and physio-chemical and biological properties of wool-copper (WO-Cu) materials obtained by the sputter deposition of copper onto the wool fibers. The WO-Cu material was subjected to physio-chemical and biological investigations. The physio-chemical investigations included the elemental analysis of materials (C, N, O, S, and Cu), their microscopic analysis, and surface properties analysis (specific surface area and total pore volume). The biological investigations consisted of the antimicrobial activity tests of the WO-Cu materials against colonies of Gram-positive (Staphylococcus aureus) bacteria, Gram-negative (Escherichia coli) bacteria, and fungal mold species (Chaetomium globosum). Biochemical-hematological tests included the evaluation of the activated partial thromboplastin time and pro-thrombin time. The tested wool-copper demonstrated the ability to interact with the DNA in a time-dependent manner. These interactions led to the DNA's breaking and degradation. The antimicrobial and antifungal activities of the WO-Cu materials suggest a potential application as an antibacterial/antifungal material. Wool-copper materials may be also used as customized materials where the blood coagulation process could be well controlled through the appropriate copper content.

2.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891407

ABSTRACT

In this study, the plasma graft polymerization technique was used to graft glycidyl methacrylate (GMA) onto polypropylene (PP) melt-blown fibers, which were subsequently aminated with N-methyl-D-glucamine (NMDG) by a ring-opening reaction, resulting in the formation of a boron adsorbent denoted as PP-g-GMA-NMDG. The optimal conditions for GMA concentration, grafting time, grafting temperature, and the quantity of NMDG were determined using both single factor testing and orthogonal testing. These experiments determined the optimal process conditions to achieve a high boron adsorption capacity of PP-g-GMA-NMDG. Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersion spectrum analysis (EDS), and water contact angle measurements were performed to characterize the prepared adsorbent. Boron adsorption experiments were carried out to investigate the effects of pH, time, temperature, and boron concentration on the boron adsorption capacity of PP-g-GMA-NMDG. The adsorption isotherms and kinetics of PP-g-GMA-NMDG for boron were also studied. The results demonstrated that the adsorption process followed a pseudo-second-order kinetic model and a Langmuir isothermal model. At a pH of 6, the maximum saturation adsorption capacity of PP-g-GMA-NMDG for boron was 18.03 ± 1 mg/g. In addition, PP-g-GMA-NMDG also showed excellent selectivity for the adsorption of boron in the presence of other cations, such as Na+, Mg2+, and Ca2+, PP-g-GMA-NMDG, and exhibited excellent selectivity towards boron adsorption. These results indicated that the technique of preparing PP-g-GMA-NMDG is both viable and environmentally benign. The PP-g-GMA-NMDG that was made has better qualities than other similar adsorbents. It has a high adsorption capacity, great selectivity, reliable repeatability, and easy recovery. These advantages indicated that the adsorbents have significant potential for widespread application in the separation of boron in water.

3.
Polymers (Basel) ; 16(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38794584

ABSTRACT

Sound and heat insulation are among the most important concerns in modern life and nonwoven composite structures are highly effective in noise reduction and heat insulation. In this study, three layered nonwoven composite structures composed of a recycled polyester (r-Pet)-based thermo-bonded nonwoven outer layer and meltblown nonwovens from Polypropylene (PP) and Polybutylene terephthalate (PBT) as inner layers were formed to provide heat and sound insulation. Fiber fineness and cross-section of the thermo-bonded outer layer, fiber type (PP/PBT), areal weight (100/200 g/m2) and process conditions (calendared/non-calendared) of the meltblown inner layer were changed systematically and the influence of these independent variables on thickness, bulk density, air permeability, sound absorption coefficient and thermal resistance of composite structures were analyzed statistically by using Design Expert 13 software. Additionally, the results were compared with composite structures including an electrospun nanofiber web inner layer and with structures without an inner layer. It was concluded that comparable or even better sound absorption values were achieved with the developed nonwoven composites containing meltblown layers compared to nanofiber-included composites and the materials in previous studies.

4.
Materials (Basel) ; 17(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38591465

ABSTRACT

The paper presents the investigation of the biological properties of Poly(Lactide)-Copper composite material obtained by sputter deposition of copper onto Poly(lactide) melt-blown nonwoven fabrics. The functionalized composite material was subjected to microbial activity tests against colonies of Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, Chaetomium globosum and Candida albicans fungal mold species and biochemical-hematological tests including the evaluation of the Activated Partial Thromboplastin Time, Prothrombin Time, Thrombin Time and electron microscopy fibrin network imaging. The substantial antimicrobial and antifungal activities of the Poly(Lactide)-Copper composite suggests potential applications as an antibacterial/antifungal material. The unmodified Poly(Lactide) fabric showed accelerated human blood plasma clotting in the intrinsic pathway, while copper plating abolished this effect. Unmodified PLA itself could be used for the preparation of wound dressing materials, accelerating coagulation in the case of hemorrhages, and its modifications with the use of various metals might be applied as new customized materials where blood coagulation process could be well controlled, yielding additional anti-pathogen effects.

5.
Polymers (Basel) ; 16(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38201818

ABSTRACT

To effectively utilize waste mask materials in road engineering and minimize resource waste, the melt-blown fabric (MBF) of waste masks was utilized to modify the virgin bitumen. The preparation process of MBF-modified bitumen was investigated, and the physical and rheological properties of bitumen were measured. Subsequently, the blending mechanism during preparation and the dispersion morphology of the modifier were explored. Finally, the pavement performance of the mixture was investigated, and a radar chart analysis was performed to quantitatively assess the effects of MBF modification. Results suggested that the recommended preparation process of shear time, shear rate, and shear temperature was 170 °C, 4000 r/min, and 15 min, respectively. MBF enhanced the high-temperature stability of the binder and weakened the temperature susceptibility. The modification was primarily a physical process. No network structure and agglomeration formed in the bitumen after modification. The addition of MBF significantly improved the resistance of the asphalt mixture to a high-temperature deformation and water damage but harmed its low-temperature crack resistance. The comprehensive assessment results of 0% (f1), 1% (f2), 3% (f3), and 5% (f4) MBF to improve the properties of the mixture were in the following order: f3>f4>f2>f1, where the impact of 3% MBF was the most significant, followed by 5% and 1% MBF.

6.
Polymers (Basel) ; 15(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960015

ABSTRACT

Polypropylene melt-blown nonwoven fabric (PP MNF) masks can effectively block pathogens in the environment from entering the human body. However, the adhesion of surviving pathogens to masks poses a risk of human infection. Thus, embedding safe and efficient antibacterial materials is the key to solving pathogen infection. In this study, stable chlorinated poly(methacrylamide-N,N'-methylenebisacrylamide) polypropylene melt-blown nonwoven fabrics (PP-P(MAA-MBAA)-Cl MNFs) have been fabricated by a simple UV cross-link and chlorination process, and the active chlorine content can reach 3500 ppm. The PP-P(MAA-MBAA)-Cl MNFs show excellent hydrophilic and antibacterial properties. The PP-P(MAA-MBAA)-Cl MNFs could kill all bacteria (both Escherichia coli and Staphylococcus aureus) with only 5 min of contact. Therefore, incorporating PP-P(MAA-MBAA)-Cl MNF as a hydrophilic antimicrobial layer into a four-layer PP-based mask holds great potential for enhancing protection and comfort.

7.
Materials (Basel) ; 16(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834662

ABSTRACT

Polyhydroxybutyrate (PHB) is a promising biopolymer. However, processing PHB in pure form in thermoplastic processes is limited due to its rapid degradation, very low initial crystallization rate, strong post-crystallization, and its low final stretchability. In this article, we screened commercial PHBs for morphological characteristics, rheological properties, and "performance" in the meltblown process in order to reveal process-relevant properties and overcome the shortcoming of PHB in thermoplastic processes for fiber formation. An evaluation of degradation (extruded (meltblown) material vs. granules) was performed via rheological and SEC analysis. The study revealed large differences in the minimum melt temperature (175 up to 200 °C) and the grade-dependent limitation of accessible throughput on a 500 mm plant. The average fiber diameter could be lowered from around 10 µm to 2.4 µm in median, which are the finest reported values in the literature so far. It was found that the determination of the necessary process temperature can be predicted well from the complex shear viscosity. Different to expectations, it became apparent that a broader initial molar mass distribution (>8) is suitable to overcome the state-of-the art limitations of PHAs in order to stabilize fiber formation, increase the productivity, and obtain better resistance towards thermal degradation in process. Accordingly, longer polymer chain fractions could be more affected by degradation than medium and short polymer chains in the distribution. Further, a low initial narrow distributed molar mass resulted in too brittle fabrics.

8.
Polymers (Basel) ; 15(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37896433

ABSTRACT

This research aimed to prepare nonwovens from polylactic acid and polybutylene succinate using the melt-blown process while varying the melt-blown process parameters, including air pressure (0.2 and 0.4 MPa) and die-to-collector distance (15, 30, and 45 cm). Increasing the air pressure and die-to-collector distance resulted in the production of smaller fibers. Simultaneously, the tensile strength was dependent on the polymer, air pressure, and die-to-collector distance used, and the percentage elongation at the break tended to increase with an increasing die-to-collector distance. Regarding thermal properties, the PBS nonwovens exhibited an increased level of crystallinity when the die-to-collector distance was raised, consistent with the degree of crystallinity obtained from X-ray diffraction analysis. Polylactic acid could be successfully processed into nonwovens under all six investigated conditions, whereas nonwoven polybutylene succinate could not be formed at a die-to-collector distance of 15 cm. However, both polymers demonstrated the feasibility of being processed into nonwovens using the melt-blown technique, showing potential for applications in the textile industry.

9.
Molecules ; 28(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37894694

ABSTRACT

This work aimed to study the influence of the polybutylene succinate (PBS) content on the physical, thermal, mechanical, and chemical properties of the obtained polylactic acid (PLA)/PBS composite fibers. PLA/PBS blend fibers were prepared by a simple melt-blown process capable of yielding nanofibers. Morphological analysis revealed that the fiber size was irregular and discontinuous in length. Including PBS affected the fiber size distribution, and the fibers had a smoother surface with increased amounts of added PBS. Differential scanning calorimetry analysis (DSC) revealed that the crystallization temperature of the PLA sheet (105.8 °C) was decreased with increasing PBS addition levels down to 91.7 °C at 10 wt.% PBS. This suggests that the addition of PBS may affect PLA crystallization, which is consistent with the X-ray diffraction analysis that revealed that the crystallinity of PLA (19.2%) was increased with increasing PBS addition up to 28.1% at 10 wt% PBS. Moreover, adding PBS increased the tensile properties while the % elongation at break was significantly decreased.

10.
J Hazard Mater ; 460: 132523, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703741

ABSTRACT

Adsorbents play a vital role in responding to marine oil spills, yet effectively cleaning up viscous oil spills remains a technical challenge. Herein, we present a superhydrophobic oil-adsorbing felt prepared using melt-blown technology and functionally enhanced with a photoelectric composite CNT/PANI coating for effectively cleaning up high-viscosity oil spills. By virtue of its superior solar/Joule heating ability and thermally conductive fiber network, p-CNT/PANI@PP notably reduced crude oil viscosity and enhanced the oil diffusion coefficient within pores. Leveraging primarily solar heating and supplemented by Joule heating, p-CNT/PANI@PP demonstrates an impressive in-situ adsorption rate of up to 560 g/h for ultra-high-viscosity crude oil (c.a. 138000 mPa·s), alongside an adsorption capacity of 15.57 g/g. This measure enables efficient viscosity reduction and continuous day-and-night recovery of viscous crude oil, addressing the challenges posed by seasonal fluctuations in seawater temperature and adverse weather conditions. Moreover, a conveyorized collector integrated with an oil-adsorbing felt realizes continuous recovery of viscous oil spills with speed control to tackle varying thicknesses of oil film. Given the top-down material design, superior functionality, and applicability to applications, this work provides a comprehensive and feasible solution to catastrophic large-area viscous oil spills.

11.
Polymers (Basel) ; 15(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37631422

ABSTRACT

Particulate matter (PM) and airborne viruses pose significant threats to both the environment and public health. As the most viable solution to prevent the inhalation of these pollutants, there is an urgent demand for face masks with excellent filtration efficiency and low-pressure drop. In this study, a crimped masterbatch (CM) is added to polypropylene feedstocks to produce curling fibers through melt-blown spinning. These curled fibers exhibit low filtration resistance and effective dust-holding performances when used for air filtration. The effect of adding CM on fiber diameter, pore size, crimp, porosity, roughness, and surface potential was studied. The filtration performance of the materials, including the PM filtration capabilities, recirculation filtration, and loading test performance, were also investigated. The results demonstrate that the degree of fiber crimp can be adjusted by incorporating varying amounts of CM. This curling was caused by the uneven shrinkage that occurred due to variations in thermal contraction between these polymers. The curled fibers created a fluffy structure in the fiber network and modified the distribution of pore sizes within it. Under the same filtration conditions as sodium chloride aerogel, CM-2 (PP:CM 8:2) exhibited similar filtration efficiency (95.54% vs. 94.74%), lower filtration resistance (88.68 Pa vs. 108.88 Pa), higher quality factor (0.035 Pa-1 vs. 0.028 Pa-1) and better dust holding capacity (10.39 g/m2 vs. 9.20 g/m2) compared to CM-0 (PP:CM 10:0). After 30 days of indoor storage, the filtration efficiency of CM-2 remained above 94%. The self-curling melt-blown filtration material developed here could potentially be applied in the field of protective masks.

12.
Nanomaterials (Basel) ; 13(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513082

ABSTRACT

Air purification devices, such as air purifiers, provide fresh air by filtering out airborne pollutants, dust, and other harmful substances using various filter systems. While air filters are generally effective in filtering pollutants such as dust, they encounter a challenge when filtering harmful microorganisms such as mites, bacteria, mold, and viruses. These microorganisms, which are present in public transport and public indoor spaces, tend to proliferate on the surface of the filter media, eventually reintroducing themselves into the air or causing unpleasant odors. To address this issue, herein, copper particles were prepared as one masterbatch and deposited on polypropylene (PP) pellets through plasma vacuum deposition to effectively filter dust and microorganisms and prevent their growth on the surface of the filter media. After adding 3-10 wt.% of the masterbatch to conventional PP pellets to fabricate a filter media, the distribution of copper on the surface of the filter media was observed through a scanning electron microscope. To verify the safety and effectiveness of the antimicrobial material, the filter media containing antimicrobial particles was tested using Escherichia coli (E. coli) and Staphylococcus aureus through a filter emission test.

13.
Polymers (Basel) ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242826

ABSTRACT

Boron is in high demand in many sectors, yet there are significant flaws in current boron resource utilization. This study describes the synthesis of a boron adsorbent based on polypropylene (PP) melt-blown fiber using ultraviolet (UV)-induced grafting of Glycidyl methacrylate (GMA) onto PP melt-blown fiber, followed by an epoxy ring-opening reaction with N-methyl-D-glucosamine (NMDG). Using single-factor studies, grafting conditions such as the GMA concentration, benzophenone dose, and grafting duration were optimized. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), and water contact angle were used to characterize the produced adsorbent (PP-g-GMA-NMDG). The PP-g-GMA-NMDG adsorption process was examined by fitting the data with different adsorption settings and models. The results demonstrated that the adsorption process was compatible with the pseudo-second-order model and the Langmuir model; however, the internal diffusion model suggested that the process was impacted by both extra- and intra-membrane diffusion. According to thermodynamic simulations, the adsorption process was exothermic. At pH 6, the greatest saturation adsorption capacity to boron was 41.65 mg·g-1 for PP-g-GMA-NMDG. The PP-g-GMA-NMDG preparation process is a feasible and environmentally friendly route, and the prepared PP-g-GMA-NMDG has the advantages of high adsorption capacity, outstanding selectivity, good reproducibility, and easy recovery when compared to similar adsorbents, indicating that the reported adsorbent is promising for boron separation from water.

14.
Polymers (Basel) ; 15(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37242880

ABSTRACT

Melt-blown nonwoven fabrics for filtration are usually manufactured using polypropylene, but after a certain time period the middle layer of the mask may have a reduced effect on adsorbing particles and may not be easily stored. Adding electret materials not only increases storage time, but also shows in this study that the addition of electret can improve filtration efficiency. Therefore, this experiment uses a melt-blown method to prepare a nonwoven layer, and adds MMT, CNT, and TiO2 electret materials to it for experiments. Polypropylene (PP) chip, montmorillonite (MMT) and titanium dioxide (TiO2) powders, and carbon nanotube (CNT) are blended and made into compound masterbatch pellets using a single-screw extruder. The resulting compound pellets thus contain different combinations of PP, MMT, TiO2, and CNT. Next, a hot pressor is used to make the compound chips into a high-poly film, which is then measured with differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The optimal parameters are yielded and employed to form the PP/MMT/TiO2 nonwoven fabrics and PP/MMT/CNT nonwoven fabrics. The basis weight, thickness, diameter, pore size, fiber covering ratio, air permeability, and tensile property of different nonwoven fabrics are evaluated in order to have the optimal group of PP-based melt-blown nonwoven fabrics. According to the results of DSC and FTIR measurements, PP and MMT, CNT, and TiO2 are completely mixed, and the melting temperature (Tm), crystallization temperature (Tc) and endotherm area are changed accordingly. The difference in enthalpy of melting changes the crystallization of PP pellets, which in turn changes the fibers. Moreover, the Fourier transform infrared (FTIR) spectroscopy results substantiate that PP pellets are well blended with CNT and MMT, according to the comparisons of characteristic peaks. Finally, the scanning electron microscopy (SEM) observation suggests that with a spinning die temperature of 240 °C and a spinning die pressure lower than 0.01 MPa, the compound pellets can be successfully formed into melt-blown nonwoven fabrics with a 10-micrometer diameter. The proposed melt-blown nonwoven fabrics can be processed with electret to form long-lasting electret melt-blown nonwoven filters.

15.
Materials (Basel) ; 16(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049224

ABSTRACT

The idea of "Nanoval technology" origins in the metal injection molding for gas atomization of metal powders and the knowledge of spunbond technologies for the creation of thermoplastic nonwovens using the benefits of both techniques. In this study, we evaluated processing limits experimentally for the spinning of different types of polypropylene, further standard polymers, and polyphenylene sulfide, marked by defect-free fiber creation. A numerical simulation study of the turbulent air flow as well as filament motion in the process visualized that the turnover from uniaxial flow (initial stretching caused by the high air velocity directed at the spinning die) to turbulent viscoelastic behavior occurs significantly earlier than in the melt-blown process. Modeling of the whole process showed that additional guide plates below the spinneret reduce the turbulent air flow significantly by regulating the inflow of secondary process air. The corresponding melt flow index of processible polymer grades varied between 35 g·10min-1 up to 1200 g·10min-1 and thus covering the range of extrusion-type, spunbond-type, yarn-type, and meltblown-type polymers. Hence, mean fiber diameters were adjustable for PP between 0.8 and 39.3 µm without changing components of the process setup. This implies that the Nanoval process enables the flexibility to produce fiber diameters in the typical range achievable by the standard meltblown process (~1-7 µm) as well as in the coarseness of spunbond nonwovens (15-30 µm) and, moreover, operates in the gap between them.

16.
Article in English | MEDLINE | ID: mdl-36907989

ABSTRACT

Airborne particulate matter (PM) pollution has caused a public health threat, including nanoscale particles, especially with emerging infectious diseases and indoor and vehicular environmental pollution. However, most existing indoor air filtration units are expensive, energy-intensive, and bulky, and there is an unavoidable trade-off between low-efficiency PM0.3/pathogen interception, PM removal, and air resistance. Herein, we designed and synthesized a two-dimensional continuous cellulose-sheath/net with a unique dual-network corrugated architecture to manufacture high-efficiency air filters and even N95 particulate face mask. Combined with its sheath/net structured pores (size 100-200 nm) consisting of a cellulose framework (1-100 nm diameter), the cellulose sheath/net filter offers high-efficiency air filtration (>99.5338%, Extrafine particles; >99.9999%, PM2.5), low-pressure drops, and a robustness quality factor of >0.14 Pa-1, utilizing their ultralight weight of 30 mg/m2 and physical adhesion and sieving behaviors. Simultaneously, masks prepared with cellulose-sheath/net filters are more likely to capture and block smaller particles than the N95 standard. The synthesis of such materials with their nanoscale features and designed macrostructures may suggest new design criteria for a novel generation of high-efficiency air filter media for different applications such as personal protection products and industrial dust removal.

17.
Front Comput Neurosci ; 17: 1109371, 2023.
Article in English | MEDLINE | ID: mdl-36817319

ABSTRACT

Meltblown nonwoven materials have gained attention due to their excellent filtration performance. The research on the performance of the intercalation meltblown preparation process is complex and a current research focus in the field of chemical production. Based on data related to intercalated and unintercalated meltblown materials under given process conditions, a product performance prediction model of intercalated meltblown materials was established under different process parameters (receiving distance, hot air velocity). The structural variables (thickness, porosity, and compressive resilience), the change in product performance, and the relationship between structural variables and product performance (filtration resistance, efficiency, air permeability) after intercalation were studied. Multiple regression analysis was used to analyze the structural variables, and evaluation of the regression results were made using R2, MSE, SSR, and SST. A BP neural network prediction model for product performance was established. The BP neural network model was used to find the maximum filtration efficiency. The study provides theoretical support for regulating product performance by solving the maximum filtration efficiency using BP neural network model.

18.
Waste Manag ; 157: 159-167, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36543059

ABSTRACT

The demand for polypropylene (PP) melt-blown materials has dramatically increased due to the COVID-19 pandemic. It has caused serious environmental problems because of the lack of effective treatment for the waste PP melt-blown materials. In this study, we propose a green and sustainable recycling method to create PP sponges from waste PP melt-blown material for oil spill cleaning by freeze-drying and thermal treatment techniques. The recycling method is simple and without secondary pollution to the environment. The developed recycling method successfully transforms 2D laminar dispersed PP microfibers into elastic sponges with a 3D porous structure, providing the material with good mechanical properties and promotes its potential application in the field of oil spill cleaning. The morphology structure, thermal properties, mechanical properties, and oil absorption properties are tested and characterized. The PP sponges with a three-dimensional porous network structure show an exceedingly low density of >0.014 g/cm3, a high porosity of <98.77 %, and a high water contact angle range of 130.4-139.9°. Moreover, the PP sponges own a good absorption capacity of <47.61 g/g for different oil and solvents. In particular, the compressive modulus of the PP sponges is 33.59-201.21 kPa, which is higher than that of most other fiber-based porous materials, indicating that the PP sponges have better durability under the same force. The excellent comprehensive performance of the PP sponges demonstrates the method developed in this study has large application potential in the field of the recycle of waste PP melt-blown materials.


Subject(s)
COVID-19 , Polypropylenes , Humans , Polypropylenes/chemistry , Pandemics , Waste Products
19.
ACS Appl Mater Interfaces ; 15(1): 2449-2458, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36583700

ABSTRACT

Flexible electromechanical sensors based on electret materials have shown great application potential in wearable electronics. However, achieving great breathability yet maintaining good washability is still a challenge for traditional electret sensors. Herein, we report a washable and breathable electret sensor based on a hydro-charging technique, namely, hydro-charged electret sensor (HCES). The melt-blown polypropylene (MBPP) electret fabric can be charged while washing with water. The surface potential of MBPP electret fabric can be improved by optimizing the type of water, water pressure, water temperature, drying temperature, drying time, ambient air pressure, and ambient relative humidity. It is proposed that the single fiber has charges of different polarities on the upper and lower surfaces due to contact electrification with water, thereby forming electric dipoles between fibers, which can lead to better surface potential stability than the traditional corona-charging method. The HCES can achieve a high air permeability of ∼215 mm/s and sensitivity up to ∼0.21 V/Pa, with output voltage remaining stable after over 36,000 working cycles and multiple times of water washing. As a demonstration example, the HCES is integrated into a chest strap to monitor human respiration conditions.

20.
Bioengineering (Basel) ; 9(11)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36354571

ABSTRACT

This study presents the advantages of combining three-dimensional biodegradable scaffolds with the injection bioprinting of hydrogels. This combination takes advantage of the synergic effect of the properties of the various components, namely the very favorable mechanical and structural properties of fiber scaffolds fabricated from polycaprolactone and the targeted injection of a hydrogel cell suspension with a high degree of hydrophilicity. These properties exert a very positive impact in terms of promoting inner cell proliferation and the ability to create compact tissue. The scaffolds were composed of a mixture of microfibers produced via meltblown technology that ensured both an optimal three-dimensional porous structure and sufficient mechanical properties, and electrospun nanofibers that allowed for good cell adhesion. The scaffolds were suitable for combination with injection bioprinting thanks to their mechanical properties, i.e., only one nanofibrous scaffold became deformed during the injection process. A computer numerical-control manipulator featuring a heated printhead that allowed for the exact dosing of the hydrogel cell suspension into the scaffolds was used for the injection bioprinting. The hyaluronan hydrogel created a favorable hydrophilic ambiance following the filling of the fiber structure. Preliminary in vitro testing proved the high potential of this combination with respect to the field of bone tissue engineering. The ideal structural and mechanical properties of the tested material allowed osteoblasts to proliferate into the inner structure of the sample. Further, the tests demonstrated the significant contribution of printed hydrogel-cell suspension to the cell proliferation rate. Thus, the study led to the identification of a suitable hydrogel for osteoblasts.

SELECTION OF CITATIONS
SEARCH DETAIL