Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
3 Biotech ; 14(10): 244, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39328501

ABSTRACT

In this study, a novel colorimetric screening method for identifying menaquinone-7 (MK-7) producing strains was established using potassium permanganate. To our knowledge, this method represents the first direct screening methodology for the identification of MK-7 producing strains. Utilizing this screening method, a new MK-7 producing strain, Bacillus subtilis GSA-184, was identified from the soil of the Tibetan Plateau. Under the optimized fermentation medium (50 g/L glycerol, 30 g/L yeast extract powder, 100 g/L soybean peptone, 1 g/L KH2PO4, and 1 g/L MnSO4), the production of MK-7 was increased to 25.7 mg/L. Additionally, the maximum production of MK-7 reached 36.46 mg/L after 48 h in a 5-L fermenter. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04097-1.

2.
Food Microbiol ; 124: 104599, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39244358

ABSTRACT

Menaquinone-7 (MK-7) is a form of vitamin K2 with health-beneficial effects. A novel fermentation strategy based on combining soy protein hydrolysates (SPHs) with biofilm-based fermentation was investigated to enhance menaquinone-7 (MK-7) biosynthesis by Bacillus subtilis natto. Results showed the SPHs increased MK-7 yield by 199.4% in two-stage aeration fermentation as compared to the SP-based medium in submerged fermentation, which was related to the formation of robust biofilm with wrinkles and the enhancement of cell viability. Moreover, there was a significant correlation between key genes related to MK-7 and biofilm synthesis, and the quorum sensing (QS) related genes, Spo0A and SinR, were downregulated by 0.64-fold and 0.39-fold respectively, which promoted biofilm matrix synthesis. Meanwhile, SPHs also enhanced the MK-7 precursor, isoprene side chain, supply, and MK-7 assembly efficiency. Improved fermentation performances of bacterial cells during fermentation were attributed to abundant oligopeptides (Mw < 1 kDa) and moderate amino acids, particularly Arg, Asp, and Phe in SPHs. All these results revealed that SPHs were a potential and superior nitrogen source for MK-7 production by Bacillus subtilis natto.


Subject(s)
Bacillus subtilis , Biofilms , Fermentation , Protein Hydrolysates , Soybean Proteins , Vitamin K 2 , Bacillus subtilis/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/physiology , Biofilms/growth & development , Vitamin K 2/analogs & derivatives , Vitamin K 2/metabolism , Protein Hydrolysates/metabolism , Soybean Proteins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Quorum Sensing
3.
Biotechnol Bioeng ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965781

ABSTRACT

Menaquinone-7 (MK-7), a form of vitamin K2, supports bone health and prevents arterial calcification. Microbial fermentation for MK-7 production has attracted widespread attention because of its low cost and short production cycles. However, insufficient substrate supply, unbalanced precursor synthesis, and low catalytic efficiency of key enzymes severely limited the efficiency of MK-7 synthesis. In this study, utilizing Bacillus subtilis BSAT01 (with an initial MK-7 titer of 231.0 mg/L) obtained in our previous study, the glycerol metabolism pathway was first enhanced to increase the 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) supply, which led to an increase in MK-7 titer to 259.7 mg/L. Subsequently, a combination of knockout strategies predicted by the genome-scale metabolic model etiBsu1209 was employed to optimize the central carbon metabolism pathway, and the resulting strain showed an increase in MK-7 production from 259.7 to 318.3 mg/L. Finally, model predictions revealed the methylerythritol phosphate pathway as the major restriction pathway, and the pathway flux was increased by heterologous introduction (Introduction of Dxs derived from Escherichia coli) and fusion expression (End-to-end fusion of two enzymes by a linker peptide), resulting in a strain with a titer of 451.0 mg/L in a shake flask and 474.0 mg/L in a 50-L bioreactor. This study achieved efficient MK-7 synthesis in B. subtilis, laying the foundation for large-scale MK-7 bioproduction.

4.
J Clin Med ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930004

ABSTRACT

Background: In observational studies, high levels of desphospho-uncarboxylated matrix gla protein (dp-ucMGP) that result from vitamin K deficiency were consistently associated with poor clinical outcomes during COVID-19. Vitamin K-activated matrix gla protein (MGP) is required to protect against elastic fibre degradation, and a deficiency may contribute to pathology. However, intervention trials assessing the effects of vitamin K supplementation in COVID-19 are lacking. Methods: This is a single-centre, phase 2, double-blind, randomised, placebo-controlled trial investigating the effects of vitamin K2 supplementation in 40 hospitalised COVID-19 patients requiring supplemental oxygen. Individuals were randomly assigned in a 1:1 ratio to receive 999 mcg of vitamin K2-menaquinone-7 (MK-7)-or a placebo daily until discharge or for a maximum of 14 days. Dp-ucMGP, the rate of elastic fibre degradation quantified by desmosine, and hepatic vitamin K status quantified by PIVKA-II were measured. Grade 3 and 4 adverse events were collected daily. As an exploratory objective, circulating vitamin K2 levels were measured. Results: Vitamin K2 was well tolerated and did not increase the number of adverse events. A linear mixed model analysis showed that dp-ucMGP and PIVKA-II decreased significantly in subjects that received supplementation compared to the controls (p = 0.008 and p = 0.0017, respectively), reflecting improved vitamin K status. The decrease in dp-ucMGP correlated with higher plasma MK-7 levels (p = 0.015). No significant effect on desmosine was found (p = 0.545). Conclusions: These results demonstrate that vitamin K2 supplementation during COVID-19 is safe and decreases dp-ucMGP. However, the current dose of vitamin K2 failed to show a protective effect against elastic fibre degradation.

5.
Nutrients ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931153

ABSTRACT

Patients with chronic kidney disease (CKD) suffer disproportionately from a high burden of cardiovascular disease, which, despite recent scientific advances, remains partly understood. Vascular calcification (VC) is the result of an ongoing process of misplaced calcium in the inner and medial layers of the arteries, which has emerged as a critical contributor to cardiovascular events in CKD. Beyond its established role in blood clotting and bone health, vitamin K appears crucial in regulating VC via vitamin K-dependent proteins (VKDPs). Among these, the matrix Gla protein (MGP) serves as both a potent inhibitor of VC and a valuable biomarker (in its inactive form) for reflecting circulating vitamin K levels. CKD patients, especially in advanced stages, often present with vitamin K deficiency due to dietary restrictions, medications, and impaired intestinal absorption in the uremic environment. Epidemiological studies confirm a strong association between vitamin K levels, inactive MGP, and increased CVD risk across CKD stages. Based on the promising results of pre-clinical data, an increasing number of clinical trials have investigated the potential benefits of vitamin K supplementation to prevent, delay, or even reverse VC, but the results have remained inconsistent.


Subject(s)
Extracellular Matrix Proteins , Matrix Gla Protein , Renal Insufficiency, Chronic , Vascular Calcification , Vitamin K Deficiency , Vitamin K , Humans , Vascular Calcification/etiology , Renal Insufficiency, Chronic/complications , Vitamin K Deficiency/complications , Extracellular Matrix Proteins/blood , Extracellular Matrix Proteins/metabolism , Calcium-Binding Proteins/blood , Dietary Supplements , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Biomarkers/blood
6.
J Agric Food Chem ; 72(8): 4301-4316, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38344988

ABSTRACT

This study optimized the menaquinone-7 (MK-7) synthetic pathways in Bacillus subtilis (B. subtilis) natto NB205, a strain that originated from natto, to enhance its MK-7 production. Utilizing mutation breeding, we developed NBMK308, a mutant strain that demonstrated a significant 117.23% increase in MK-7 production. A comprehensive transcriptome analysis identified two key genes, ispA and ispE, as being critical in MK-7 synthesis. The dual-sgRNA CRISPRa system was utilized to achieve precise regulation of ispA and ispE in the newly engineered strain, A3E3. This strategic modulation resulted in a significant enhancement of MK-7 production, achieving increases of 20.02% and 201.41% compared to traditional overexpression systems and the original strain NB205, respectively. Furthermore, the fermentation supernatant from A3E3 notably inhibited Salmonella invasion in Caco-2 cells, showcasing its potential for combating such infections. The safety of the dual-sgRNA CRISPRa system was confirmed through cell assays. The utilization of the dual-sgRNA CRISPRa system in this study was crucial for the precise regulation of key genes in MK-7 synthesis, leading to a remarkable increase in production and demonstrating additional therapeutic potential in inhibiting pathogenic infections. This approach effectively combined the advantages of microbial fermentation and biotechnology, addressing health and nutritional challenges.


Subject(s)
Salmonella Infections , Soy Foods , Humans , Bacillus subtilis/metabolism , RNA, Guide, CRISPR-Cas Systems , Caco-2 Cells , Fermentation , Salmonella Infections/prevention & control
7.
Bioprocess Biosyst Eng ; 47(2): 211-222, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153563

ABSTRACT

Menaquinone-7 (MK-7) is an important class of vitamin K2 that is essential in human health and can prevent osteoporosis and cardiovascular disease. However, due to the complex synthesis pathway, the synthesis efficiency is low. The main objective of this study was to explore the effect of enhanced supply of precursors in Bacillus natto. Three precursors of pyruvate, shikimic acid, and sodium glutamate were chosen to investigate the effect of enhanced supply of precursors on MK-7 synthesis. Then, the optimal concentrations, different combinations, and different adding times were systematically studied, respectively. Results showed that the combination of shikimic acid and sodium glutamate could boost MK-7 production by 2 times, reaching 50 mg/L of MK-7 titer and 0.52 mg/(L·h) of MK-7 productivity. Furthermore, adding shikimic acid and sodium glutamate initially and feeding pyruvate at 48 h and 72 h increased MK-7 production to 58 mg/L. At the same time, the expression of the three related genes was also significantly upregulated. Subsequently, a new fermentation strategy combining the precursors enhancement and product secretion was proposed to enhance MK-7 yield and MK-7 productivity to 63 mg/L and 0.45 mg/(L·h). This study proposed a new fermentation regulation strategy for the enhancement of vitamin K2 biosynthesis.


Subject(s)
Shikimic Acid , Sodium Glutamate , Humans , Vitamin K 2/metabolism , Shikimic Acid/metabolism , Sodium Glutamate/metabolism , Fermentation , Bacillus subtilis/genetics , Pyruvates/metabolism
8.
Molecules ; 28(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37764299

ABSTRACT

Biological properties of menaquinone-7, one of the vitamin K2 vitamers (K2MK-7), both those proven and those that remain to be investigated, arouse extensive interest that goes beyond the strictly scientific framework. The most important of them is the prevention of age-related diseases, considering that we live in the times identified as the era of aging societies and many people are exposed to the vitamin K2MK-7 deficiency. Therefore, an effective analytical protocol that can be adopted as a diagnostic and preventive analytics tool is needed. Herein, a simple sample preparation method followed by the liquid chromatography-tandem mass spectrometry-based method (LC-MS/MS), was used for the selective and sensitive determination of K2MK-7 in serum samples. Under the optimized conditions, using 500 µL of serum and the same amount of n-hexane, the reproducibility and the accuracy were obtained in the ranges of 89-97% and 86-110%, respectively, and the limit of detection value was 0.01 ng/mL. This method was used for the routine analysis. Statistical interpretation of the data from 518 samples obtained during 2 years of practice allowed for obtaining information on the content and distribution of K2MK-7 in the Polish population, broken down by the sex and age groups.


Subject(s)
Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Reproducibility of Results , Vitamin K 2
9.
Nutrients ; 15(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37571336

ABSTRACT

Insufficient calcium intake during growth is a global public health concern. The aim of this study was to investigate the effects of dietary menaquinone-7 (MK-7) on bone accrual in growing Sprague-Dawley rats under calcium restriction. Following 13 weeks of treatment, various bone quality parameters, including microarchitecture, were measured. Fecal and cecal samples were subjected to microbiome (16S rRNA gene sequencing) analyses, while metabolomics analysis of the cecum and humerus samples was analyzed based on UHPLC-Q/TOF-MS. We found that calcium deficiency diminished the richness of the microbiome and disrupted microbiome composition, accompanied by an elevation in the relative abundance of Parasutterella. Furthermore, calcium insufficiency escalated the level of isovaleric acid and modified the metabolic profiles. MK-7 supplementation significantly increased the cortical thickness, cortical bone area, and the calcium content of the femur. Apart from improving bone calcium deposition and diminishing bone resorption, the mechanisms underlying the beneficial effects of MK on bone quality also involve the modulation of the host's metabolic pathways and the composition of gut microbiota. The gut-bone axis holds promise as an efficacious target for ameliorating calcium deficiency in children's bone quality, and MK-7 is a promising dietary supplement from this perspective.

10.
J Biochem ; 174(4): 383-389, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37419501

ABSTRACT

Vitamin Ks are expected to contribute bone and cardiovascular health. Especially, menaquinone-7 has a higher bioavailability and a longer half-life than other vitamin Ks in the human body. However, their low water-solubility limits their application. On the other hand, Bacillus subtilis natto produces a water-soluble complex, which comprises menaquinone-7 and peptides. The peptide named K-binding factor (KBF) has been reported as the main component of the complex. In the present, the structural characteristics of KBF were studied. Mass spectrometry showed significant peaks at m/z = 1050, while the previous PAGE suggested that molecular weight of KBF was ~ 3k. Amino acid analysis revealed that the 1k peptides were the various combinations of nine amino acids, among which Asx, Glx, Val, Leu and Met were found to be the most abundant. The peptides could serve as detergent properties. The 1k peptides could be isolated by reverse-phase high performance liquid chromatography. The bundle of three 1k detergent-like peptides would participate to the micelle structure containing menqauinone-7 inside. In conclusion, a basic unit of KBF would be the ~ 1k peptides, and the three basic unit assemble to the ~ 3k bundle, then the bundle form a water-soluble micelle including menqauinone-7 inside.


Subject(s)
Bacillus subtilis , Soy Foods , Humans , Bacillus subtilis/metabolism , Detergents/metabolism , Micelles , Vitamin K 2/metabolism , Amino Acids/metabolism , Vitamins/metabolism
11.
Mol Biotechnol ; 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37517081

ABSTRACT

The K family of vitamins includes a collection of molecules with different pharmacokinetic characteristics. Menaquinone-7 (MK-7) has the finest properties and is the most therapeutically beneficial due to its long plasma half-life and outstanding extrahepatic bioavailability. MK-7 exhibits cis-trans isomerism, and merely the all-trans form is biologically efficacious. Therefore, the remedial value of MK-7 end products is exclusively governed by the quantity of all-trans MK-7. Consumers favour fermentation for the production of MK-7; however, it involves several challenges. The low MK-7 yield and extensive downstream processing requirements increase production costs, resulting in an expensive final product that is not universally available. Bacterial cell immobilisation with iron oxide nanoparticles (IONs) can potentially address the limitations of MK-7 fermentation. Uncoated IONs tend to have low stability and can adversely affect cell viability; thus, amine-functionalised IONs, owing to their increased physicochemical stability and biocompatibility, are a favourable alternative. Nonetheless, employing biocompatible IONs for this purpose is only advantageous if the bioactive MK-7 isomer is obtained in the most significant fraction, exploring which formed the aim of this investigation. Two amine-functionalised IONs, namely 3-aminopropyltriethoxysilane (APTES)-coated IONs (IONs@APTES) and L-Lysine (L-Lys)-coated IONs (L-Lys@IONs), were synthesised and characterised, and their impact on various parameters was evaluated. IONs@APTES were superior, and the optimal concentration (300 [Formula: see text]g/mL) increased all-trans MK-7 production and improved its yield relative to the untreated cells by 2.3- and 3.1-fold, respectively. The outcomes of this study present an opportunity to develop an innovative and effective fermentation method that enhances the production of bioactive MK-7.

12.
Appl Microbiol Biotechnol ; 107(16): 5051-5062, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37358810

ABSTRACT

Menaquinone-7 is a form of vitamin K2 that has been shown to have numerous healthy benefits. In this study, several surfactants were investigated to enhance the production of menaquinone-7 in Bacillus natto. Results showed that Brij-58 supplementation influenced the cell membrane via adsorption, and changed the interfacial tension of fermentation broth, while the changes in the state and the composition of the cell membrane enhanced the secretion and biosynthesis of menaquinone-7. The total production and secretion rate of menaquinone-7 increased by 48.0% and 56.2% respectively. During fermentation, the integrity of the cell membrane decreased by 82.9% while the permeability increased by 158% when the maximum secretory rate was reached. Furthermore, Brij-58 supplementation induced the stress response in bacteria, resulting in hyperpolarization of the membrane, and increased membrane ATPase activity. Finally, changes in fatty acid composition increased membrane fluidity by 30.1%. This study provided an effective strategy to enhance menaquinone-7 yield in Bacillus natto and revealed the mechanism of Brij-58 supplementation in menaquinone-7 production. KEY POINTS: • MK-7 yield in Bacillus natto was significantly increased by Brij-58 supplementation. • Brij-58 could be adsorbed on cell surface and change fermentation environment. • Brij-58 supplementation could affect the state and composition of the cell membrane.


Subject(s)
Cetomacrogol , Soy Foods , Cetomacrogol/metabolism , Bacillus subtilis/metabolism , Vitamin K 2/metabolism , Fermentation , Dietary Supplements
13.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37368255

ABSTRACT

Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 µg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7.

14.
Nutrients ; 15(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37299386

ABSTRACT

BACKGROUND: There is a very high prevalence of subclinical vitamin K deficiency in patients requiring hemodialysis (HD), and this problem is associated with vascular calcification and arterial stiffness. Vitamin K2 (MK-7) supplementation can improve vitamin K status in HD patients. However, the benefits of vitamin K supplementation on arterial stiffness have still not been established. The present study was conducted to evaluate the efficacy of menaquinone-7 (MK-7) supplementation on arterial stiffness in chronic HD patients. METHODS: This open-label multicenter randomized clinical trial was conducted in 96 HD patients who had arterial stiffness, defined by high carotid femoral pulse wave velocity (cfPWV ≥ 10 m/s). The patients were randomly assigned to receive oral MK-7 (375 mcg once daily) for 24 weeks (n = 50) or standard care (control group; n = 46). The change in cfPWV was the primary outcome. RESULTS: Baseline parameters were comparable between the two groups. There was no significant difference in the change in cPWV at 24 weeks between the MK-7 group and standard care [-6.0% (-20.2, 2.3) vs. -6.8% (-19.0, 7.3), p = 0.24]. However, we found that MK-7 significantly decreased cPWV in patients with diabetes [-10.0% (-15.9, -0.8) vs. 3.8% (-5.8, 11.6), p = 0.008]. In addition, the MK-7 group had a lower rate of arterial stiffness progression, compared to controls (30.2% vs. 39.5%, p = 0.37), especially in diabetes patients (21.4% vs. 72.7%, p = 0.01). No serious adverse events were observed during the 24 weeks. CONCLUSION: Vitamin K supplements provided a beneficial impact in lowering the rate of arterial stiffness progression in chronic hemodialysis patients with diabetes. Possible benefits on cardiovascular outcomes require further investigation.


Subject(s)
Vascular Stiffness , Humans , Vitamin K 2/pharmacology , Pulse Wave Analysis , Renal Dialysis/adverse effects , Vitamin K/pharmacology , Dietary Supplements
15.
Br J Nutr ; : 1-13, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37132123

ABSTRACT

Menaquinone-7 (MK-7), a multipotent vitamin K2, possesses a wide range of biological activities, a precise curative effect and excellent safety. A simple and rapid LC-APCI-MS/MS method for the determination of MK-7 in human plasma with single liquid-liquid extraction (LLE) extraction and 4·5-min analysis time has been developed and validated. Four per cent bovine serum albumin (BSA) was used as surrogate matrix for standard curves and endogenous baseline subtraction. This method was reproducible and reliable and was used to analyse of MK-7 in human plasma. The endogenous circadian rhythm and bioavailability of MK-7 were investigated in two randomised single-dose, open, one-way clinical trials (Study I and Study II). A total of five healthy male subjects were enrolled in Study I and 12 healthy male subjects in Study II. Single-dose (1 mg) of MK-7 was given to each subject under fasting condition, and all eligible subjects were given a restricting VK2 diet for 4 d prior to drug administration and during the trial. The experiment results of Study I demonstrated that endogenous MK-7 has no circadian rhythm in individuals. Both studies showed MK-7 are absorbed with peak plasma concentrations at about 6 h after intake and has a very long half-life time.

16.
Nephrol Dial Transplant ; 38(10): 2131-2142, 2023 09 29.
Article in English | MEDLINE | ID: mdl-36460034

ABSTRACT

BACKGROUND: Vitamin K deficiency is highly prevalent in patients on dialysis and may contribute to their low bone mineral density (BMD) and increased risk of fracture. This study investigated the effect of menaquinone-7 (MK-7) supplementation on BMD in patients on chronic dialysis. METHODS: In a multicentre, double-blind, placebo-controlled intervention trial, 123 patients on chronic dialysis were randomised to a daily oral supplement of either MK-7 360 µg or placebo for 2 years. BMD of the distal radius (1/3, mid, ultradistal and total), femoral neck, lumbar spine (L1-L4) and whole body was assessed by dual-energy X-ray absorptiometry. Serum levels of vitamin K1 and MK-7 and plasma levels of total osteocalcin, dephosphorylated-uncarboxylated matrix Gla protein and protein induced by vitamin K absence II were measured to assess vitamin K status. RESULTS: After 2 years, an accelerated BMD loss of the 1/3 distal radius was found with MK-7 supplementation {mean difference of changes relative to placebo -0.023 g/cm2 [95% confidence interval (CI) -0.039 to -0.008]}, whereas the decrease in lumbar spine BMD seen in the placebo group was prevented [mean difference of changes between groups 0.050 g/cm2 (95% CI 0.015-0.085)]. No significant effects were observed at the remaining skeletal sites. Vitamin K status strongly improved in MK-7-supplemented participants. CONCLUSION: Compared with placebo, an accelerated BMD loss of the 1/3 distal radius was found after 2 years of MK-7 supplementation, whereas a decline in lumbar spine BMD was prevented. As such, MK-7 supplementation might modify BMD site-specifically in patients on dialysis. In aggregate, our findings do not support MK-7 supplementation to preserve bone in patients on dialysis.


Subject(s)
Bone Density , Vitamin K , Humans , Renal Dialysis/adverse effects , Absorptiometry, Photon , Vitamin K 2/pharmacology , Vitamin K 2/therapeutic use , Dietary Supplements , Double-Blind Method
17.
Int J Vitam Nutr Res ; 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36039403

ABSTRACT

Vitamin K (VK) is a fat-soluble vitamin that is indispensable for the activation of vitamin K-dependent proteins (VKDPs). It has been shown to play an important role in the proper calcium deposit at the bone level, hindering that on the vascular walls. The deficiency of this vitamin in European populations is frequent and unknown. It is related to several factors, poor dietary intake, altered intestinal absorption or altered production by bacteria, indicating possible dysbiosis. For Vitamin K2 (VK2), there is currently no official reference daily intake (RDI). However, the effects of VK2 on the improvement of health in cardiovascular diseases, on bone metabolism, on chronic kidney diseases have been the subject of research in recent decades. The microbiota in the gastrointestinal tract plays an important role: Bacteroides are primarily capable of synthetizing very long chain forms of menaquinones and, in addition to the bacteria present in the intestinal flora, VK2 is also produced by bacteria used in food fermentation processes. This review provides an update on the current literature regarding the origin of VK2 and its implications in what is called the "calcium paradox", namely the lack of calcium in the bone and its storage in the wall of the vessel.

18.
Bioprocess Biosyst Eng ; 45(8): 1371-1390, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35864383

ABSTRACT

Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.


Subject(s)
Glucose , Vitamins , Fermentation , Vitamin K 2/analogs & derivatives
19.
Microb Cell Fact ; 21(1): 101, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35643569

ABSTRACT

BACKGROUND: Menaquinone-7 (MK-7), which is associated with complex and tightly regulated pathways and redox imbalances, is produced at low titres in Bacillus subtilis. Synthetic biology provides a rational engineering principle for the transcriptional optimisation of key enzymes and the artificial creation of cofactor regeneration systems without regulatory interference. This holds great promise for alleviating pathway bottlenecks and improving the efficiency of carbon and energy utilisation. RESULTS: We used a bottom-up synthetic biology approach for the synthetic redesign of central carbon and to improve the adaptability between material and energy metabolism in MK-7 synthesis pathways. First, the rate-limiting enzymes, 1-deoxyxylulose-5-phosphate synthase (DXS), isopentenyl-diphosphate delta-isomerase (Fni), 1-deoxyxylulose-5-phosphate reductase (DXR), isochorismate synthase (MenF), and 3-deoxy-7-phosphoheptulonate synthase (AroA) in the MK-7 pathway were sequentially overexpressed. Promoter engineering and fusion tags were used to overexpress the key enzyme MenA, and the titre of MK-7 was 39.01 mg/L. Finally, after stoichiometric calculation and optimisation of the cofactor regeneration pathway, we constructed two NADPH regeneration systems, enhanced the endogenous cofactor regeneration pathway, and introduced a heterologous NADH kinase (Pos5P) to increase the availability of NADPH for MK-7 biosynthesis. The strain expressing pos5P was more efficient in converting NADH to NADPH and had excellent MK-7 synthesis ability. Following three Design-Build-Test-Learn cycles, the titre of MK-7 after flask fermentation reached 53.07 mg/L, which was 4.52 times that of B. subtilis 168. Additionally, the artificially constructed cofactor regeneration system reduced the amount of NADH-dependent by-product lactate in the fermentation broth by 9.15%. This resulted in decreased energy loss and improved carbon conversion. CONCLUSIONS: In summary, a "high-efficiency, low-carbon, cofactor-recycling" MK-7 synthetic strain was constructed, and the strategy used in this study can be generally applied for constructing high-efficiency synthesis platforms for other terpenoids, laying the foundation for the large-scale production of high-value MK-7 as well as terpenoids.


Subject(s)
Bacillus subtilis , Synthetic Biology , Bacillus subtilis/metabolism , Carbon/metabolism , Metabolic Engineering/methods , NAD/metabolism , NADP/metabolism , Vitamin K 2/analogs & derivatives , Vitamin K 2/metabolism
20.
Front Microbiol ; 13: 899802, 2022.
Article in English | MEDLINE | ID: mdl-35572665

ABSTRACT

Menaquinone-7 (MK-7) is an important vitamin K2, synthesized from the menaquinone parent ring and seven isoprene side chains. Presently, the synthesis of MK-7 stimulated by environmental stress primarily focuses on oxygen stress, while the effect of alkali stress is rarely studied. Therefore, this study researched the effects of alkali stress on the fermentation performance and gene expression of Bacillus subtilis natto. The organism's growth characteristics, biomass, sporogenesis, MK-7 biosynthesis, and gene expression were analyzed. After a pH 8.5 stress adaptation treatment for 0.5 h and subsequent fermentation at pH 8.5, which promoted the growth of the strain and inhibited the spore formation rate. In addition, biomass was significantly increased (P < 0.05). The conversion rate of glycerol to MK-7 was 1.68 times higher than that of the control group, and the yield of MK-7 increased to 2.10 times. Transcriptomic analysis showed that the MK-7 high-yielding strain had enhanced carbon source utilization, increased glycerol and pyruvate metabolism, enhanced the Embden-Meyerhof pathway (EMP), tricarboxylic acid (TCA) circulation flux, and terpenoid biosynthesis pathway, and promoted the accumulation of acetyl-CoA, the side-chain precursor of isoprene. At the same time, the up-regulation of transketolase increased the metabolic flux of the pentose phosphate (HMP) pathway, which was conducive to the accumulation of D-erythrose 4-phosphate, the precursor of the menadione parent ring. This study's results contribute to a better understanding of the effects of environmental stress on MK-7 fermentation by Bacillus subtilis natto and the molecular regulatory mechanism of MK-7 biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL