Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.695
Filter
1.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095155

ABSTRACT

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Subject(s)
Carbon Dioxide , Metal-Organic Frameworks , Carbon Dioxide/chemistry , Adsorption , Metal-Organic Frameworks/chemistry , Air Pollutants/chemistry , Charcoal/chemistry
2.
Small ; : e2405051, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092657

ABSTRACT

Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.

3.
Food Chem ; 460(Pt 2): 140660, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39089029

ABSTRACT

This study utilized computational simulation and surface molecular imprinting technology to develop a magnetic metal-organic framework molecularly imprinted polymer (Fe3O4@ZIF-8@SMIP) capable of selectively recognizing and detecting multiple fluoroquinolones (FQs). The Fe3O4@ZIF-8@SMIP material was synthesized using the "common" template-ofloxacin, identified by computational simulation, demonstrating notable adsorption capacity (88.61-212.93 mg g-1) and rapid mass-transfer features (equilibration time: 2-3 min) for all tested FQs, consistent with Langmuir adsorption model. Subsequently, this material was employed as a magnetic solid-phase-extraction adsorbent for adsorption and detection of multiple FQs by combining with high performance liquid chromatography. The developed method exhibited good linearity for various FQs within the concentration range of 0.1-500 µg L-1, with low limit of detection (0.0605-0.1529 µg L-1) and limit of quantitation (0.2017-0.5097 µg L-1). Satisfactory recoveries (88.38-103.44%) were obtained when applied to spiked food samples, demonstrating the substantial potential of this Fe3O4@ZIF-8@SMIP material for rapid enrichment and identification for multiple FQs residues.

4.
Angew Chem Int Ed Engl ; : e202409256, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088255

ABSTRACT

Developing an anode material that has better performance efficiency than commercial graphite while keeping the features of economic scalability and environmental safety is highly desirable yet challenging. MOFs are a promising addition to the ongoing efforts, however, the relatively poor performance, chemical instability, and large-scale economic production of efficiency-proven pristine MOFs restrict their utility in real-life energy storage applications. Furthermore, hierarchical porosity for lucid mass diffusion, high-density lithiophilic sites are some of the structural parameters for improving the electrode performance. Herein, we have demonstrated the potential of economically scalable salicylaldehydate 3D-conjugated-MOF (Fe-Tp) as a high-performance anode in Li-ion batteries: the anode-specific capacity achieved up to 1447 mA h g-1 at 0.1 A g-1 and 89% of cyclic stability after 500 cycles at 1.0 A g-1.for pristine MOF. More importantly, incorporating 10% Fe-Tp doping in commercial graphite (MOFite) significantly enhanced lithium storage, doubling capacitance after 400 cycles. It signifies the potential practical utility of Fe-Tp as a performance booster for commercial anode material.

5.
Int J Biol Macromol ; 277(Pt 2): 134277, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089537

ABSTRACT

The widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method. The resulting BC@MOF composite nanofibers have a high specific surface area of 651 m2/g and can be assembled into a self-supported porous membrane (BMMCa) through vacuum filtration with the assistance of calcium ions. The addition of Ca(II) significantly enhanced the mechanical properties of the membrane through dispersion effect and electrostatic interactions, as well as enhancing its adsorption performance through the salting-out effect. The BMMCa membrane, with its hierarchical porous structure and high flux, exhibits high selectivity for Congo red (CR) with an ultra-high adsorption capacity of 3518.6 mg/g. Furthermore, the self-supporting membrane achieved rapid and convenient removal of CR through circulating filtration adsorption. The adsorption mechanism and selectivity were verified through the molecular dynamics simulation calculations by Materials Studio (MS) software. This membrane-based adsorbent, with its ultra-high adsorption capacity, good selectivity, and recycling ability, has great potential for practical wastewater treatment applications.

6.
Adv Mater ; : e2408094, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096074

ABSTRACT

Multinuclear metal clusters are ideal candidates to catalyze small molecule activation reactions involving the transfer of multiple electrons. However, synthesizing active metal clusters is a big challenge. Herein, on constructing an unparalleled Co4(SO4)4 cluster within porphyrin-based metal-organic frameworks (MOFs) and the electrocatalytic features of such Co4(SO4)4 clusters for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is reported. The reaction of CoII sulfate and metal complexes of tetrakis(4-pyridyl)porphyrin under solvothermal conditions afforded Co4-M-MOFs (M═Co, Cu, and Zn). Crystallographic studies revealed that these Co4-M-MOFs have the same framework structure, having the Co4(SO4)4 clusters connected by metalloporphyrin units through Co─Npyridyl bonds. In the Co4(SO4)4 cluster, the four CoII ions are chemically and symmetrically equivalent and are each coordinated with four sulfate O atoms to give a distorted cube-like structure. Electrocatalytic studies showed that these Co4-M-MOFs are all active for electrocatalytic OER and ORR. Importantly, by regulating the activity of the metalloporphyrin units, it is confirmed that the Co4(SO4)4 cluster is active for oxygen electrocatalysis. With the use of Co porphyrins as connecting units, Co4-Co-MOF displays the highest electrocatalytic activity in this series of MOFs by showing a 10 mA cm-2 OER current density at 357 mV overpotential and an ORR half-wave potential at 0.83 V versus reversible hydrogen electrode (RHE). Theoretical studies revealed the synergistic effect of two proximal Co atoms in the Co4(SO4)4 cluster in OER by facilitating the formation of O─O bonds. This work is of fundamental significance to present the construction of Co4(SO4)4 clusters in framework structures for oxygen electrocatalysis and to demonstrate the cooperation between two proximal Co atoms in such clusters during the O─O bond formation process.

7.
Adv Mater ; : e2309572, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096076

ABSTRACT

The construction of ultrathin porous membranes with stable structures is critical for achieving efficient gas separation. Inspired by the binary-cooperative structural features of bones and teeth-composed of rigid hydroxyapatite and flexible collagen, which confer excellent mechanical strength-a binary-cooperative porous membrane constructed with gel-state zeolitic imidazolate frameworks (g-ZIFs), synthesized using a metal-gel-induced strategy, is proposed. The enlarged cavity size and flexible frameworks of the g-ZIF nanoparticles significantly improve gas adsorption and diffusion, respectively. After thermal treatment, the coordination structures forming rigid segments in the g-ZIF membranes appear at the stacked g-ZIF boundaries, exhibiting a higher Young's modulus than the g-ZIF nanoparticles, denoted as the flexible segments. The g-ZIF membranes demonstrate excellent tensile and compression resistances, attributed to the effective translation of binary-cooperative effects of rigidity and flexibility into the membranes. The resulting dual-aperture structure, composed of g-ZIF nanoparticles surrounded by nanoscale apertures at the boundaries, yields a membrane with a stable CO2 permeance of 4834 GPU and CO2/CH4 selectivity of 90 within 3.0 MPa.

8.
Biosens Bioelectron ; 263: 116593, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39059178

ABSTRACT

Nanozymes have garnered considerable research interest for their unique capacity to bridge nanotechnology and biology. Current studies predominantly concentrate on exploring nanozymes with diverse catalytic activities and their potential applications across various disciplines. Among them, nanoscale metal-organic frameworks (MOFs) are promising nanomaterials for constructing nanozymes. In this review, we firstly introduce the general construction strategies for MOF-based nanozymes. In addition, we also classify the MOF-based nanozymes in detail based on their catalytic performance. Thirdly, the recent research progress of MOF-based nanozymes in the field of biosensing, cancer therapy, antibacterial infection, and antioxidation are also comprehensively reviewed. Finally, we discuss the current challenges and future perspectives of MOF-based nanozymes, with the aim of assisting in their construction and maximizing their potential in bioapplications. It is hoped that we could provide scientists in materials science and biomedical research with valuable and comprehensive information, fostering advancements in interdisciplinary fields.

9.
Angew Chem Int Ed Engl ; : e202409588, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060222

ABSTRACT

The wrinkles are pervasive in ultrathin two-dimensional (2D) materials, but the regulation of wrinkles is rarely explored systematically. However, the regulation of wrinkles at nanometer scale is merely explored. Here, we employed a series of carboxylic acids (from formic acid to octanoic acid) to control the wrinkles of Zr-BTB (BTB = 1, 3, 5-(4-carboxylphenyl)-benzene) metal-organic framework (MOF) nanosheet. The wrinkles at the micrometer scale were observed with transmission electron microscopy. Furthermore, high-angle annular dark-field (HAADF) images showed lattice distortion in many nanoscale regions, which was precisely matched to the nano-wrinkles. With the changes of hydrophilicity/hydrophobicity, MOF-MOF and MOF-solvent interactions were synergistically regulated and wrinkles with different sizes were obtained, which was supported by HAADF, molecular dynamics and density functional theory calculation. Different wrinkle sizes resulted in different pore sizes between the Zr-BTB nanosheet interlayers, providing highly-oriented thin films and the successive optimization of kinetic diffusion pathways, proved by grazing-incidence wide-angle X-ray scattering and nitrogen adsorption. The most suitable wrinkle pore from Zr-BTB-C4 exhibited highly efficient chromatographic separation of the substituted benzene isomers. Our work provides a rational route for the modulation of nanoscale wrinkles and their stacked pores of MOF nanosheets and improves the separation abilities of MOFs.

10.
Angew Chem Int Ed Engl ; : e202411216, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044263

ABSTRACT

2D functional porous frameworks offer a platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to breakthrough key limitations on site configuration (typical M-O4 or M-N4 units) and product selectivity (common CO2-to-CO conversion). Herein, a novel 2D metal-organic framework (MOF) with planar asymmetric N/O mixed coordinated Cu-N1O3 unit is constructed, labeled as BIT-119. When applied to CO2RR, BIT-119 could reach a CO2-to-C2 conversion with C2 partial current density ranging from 36.9 to 165.0 mA cm-2 in flow cell. Compared to the typical symmetric Cu-O4 units, asymmetric Cu-N1O3 units lead to the re-distribution of local electron structure, regulating the adsorption strength of several key adsorbates and the following catalytic selectivity. From experimental and theoretical analyses, Cu-N1O3 sites could simultaneously couple the atop-type (on Cu site) and bridge-type (on Cu-N site) adsorption of *C1 species to reach the CO2-to-C2 conversion. This work broadens the feasible C-C coupling mechanism on 2D functional porous frameworks.

11.
Sci Rep ; 14(1): 16887, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043803

ABSTRACT

Wastewater treatment is inevitably required to alleviate the pollution of water resources by various contaminants such as antibiotics. MOFs are novel materials with photocatalytic activities. In this study, sonophotocatalytic degradation of tetracycline (TC) by the Cerium-based MOF (Ce-MOF) is optimized by modification of its synthesis route. Ce-MOF synthesis by room temperature (RT), hydrothermal (HT), and sonochemical synthesis (SC) are studied. TC degradation experiments revealed the superiority of SC synthesis. The interplay of main synthesis parameters, namely, initial ligand concentration, ultrasound (US) power and time on sonophotocatalytic activity of Ce-MOF, were investigated by response surface methodology model (RSM) utilizing the central composite experimental design (CCD). The optimum SC synthesis conditions are an initial ligand concentration of 8.4 mmol/L, a sonication power of 50 amplitude, and a US time of 60 min. The optimally synthesized Ce-MOF was characterized by infrared spectroscopy, FTIR, XRD, FE-SEM, TEM, zeta potential analysis, diffuse reflectance spectroscopy, particle size analysis, Mott-Schottky analysis, photocurrent analysis, electrochemical impedance spectra, and photoluminescence spectroscopy. The findings indicate that the removal efficiency of TC can reach up to 81.75% within 120 min in an aqueous solution containing an initial TC concentration of 120 ppm and 1 g/L Ce-MOF at pH of 7. Mineralization efficiency of the process is 71% according to COD measurements. The Ce-MOF catalyst retained its chemical stability and remained active upon TC degradation which makes it a promising candidate for wastewater treatment.

12.
Angew Chem Int Ed Engl ; : e202413227, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056457

ABSTRACT

Iron-based catalysts play an important role in the ammonia industry. As one of the most abundant iron minerals, Fe3O4 containing FeII and FeIII sites is widely distributed in the earth's crust and even on exoplanets, theoretically giving it both economic and catalytic potentials in ammonia synthesis. However, in the absence of specific active co-catalyst and harsh conditions, Fe3O4 is impossible to achieve ammonia synthesis alone. Here, we designed to activate the relatively inert FeII and FeIII sites in Fe3O4 with a third FeIII site inlayed in a coordination framework (MIL-101(Fe)) to achieve the unpresented multi-site collaborative catalysis. In-depth mechanism study confirmed the roles of three different Fe sites in N2 activation, H2 activation, and product transfer, respectively. Efficient N2-H2 activation to NH3 on the Fe3O4-based catalytic system has been achieved at extremely mild conditions. Our research provides a theoretical basis and a new strategy for designing efficient non-noble metal-based ammonia synthesis catalyst with minimized energy consumption.

13.
Small ; : e2303315, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058219

ABSTRACT

Metal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition - absent for the bare MOF or IL - provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C. Structural analysis and in situ monitoring indicate an electrostatic interaction between the IL molecules and the Cu paddle-wheels, leading to a decrease in pore symmetry at low temperature. These interactions are reversibly released above the transition temperature, which reflects in a volume expansion of the MOF-IL composite.

14.
Angew Chem Int Ed Engl ; : e202411766, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058420

ABSTRACT

A copper porphyrin-derived metal-organic framework electrocatalyst, FICN-8, was synthesized and its catalytic activity for CO2 reduction reaction (CO2RR) was investigated. FICN-8 selectively catalyzed electrochemical reduction of CO2 to CO in anhydrous acetonitrile electrolyte. However, formic acid became the dominant CO2RR product with the addition of a proton source to the system. Mechanistic studies revealed the change of major reduction pathway upon proton source addition, while catalyst-bound hydride (*H) species was proposed as the key intermediate for formic acid production. This work highlights the importance of electrolyte composition on CO2RR product selectivity.

15.
Biosensors (Basel) ; 14(7)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39056631

ABSTRACT

Mycotoxins are secondary products produced primarily by fungi and are pathogens of animals and cereals, not only affecting agriculture and the food industry but also causing great economic losses. The development of rapid and sensitive methods for the detection of mycotoxins in food is of great significance for livelihood issues. This study employed an amino-functionalized zirconium luminescent metal-organic framework (LOF) (i.e., UiO-66-NH2). Click chemistry was utilized to assemble UiO-66-NH2 in a controlled manner, generating LOF assemblies to serve as probes for fluorescence-linked immunoassays. The proposed fluoroimmunoassay method for Zearalenone (ZEN) and Fumonisin B1 (FB1) detection based on the UiO-66-NH2 assembled probe (CLICK-FLISA) afforded a linear response range of 1-20 µmol/L for ZEN, 20 µmol/L for FB1, and a very low detection limit (0.048-0.065 µmol/L for ZEN; 0.048-0.065 µmol/L for FB1). These satisfying results demonstrate promising applications for on-site quick testing in practical sample analysis. Moreover, the amino functionalization may also serve as a modification strategy to design luminescent sensors for other food contaminants.


Subject(s)
Fumonisins , Metal-Organic Frameworks , Zea mays , Zearalenone , Fumonisins/analysis , Zearalenone/analysis , Metal-Organic Frameworks/chemistry , Zea mays/chemistry , Click Chemistry , Fluoroimmunoassay/methods , Biosensing Techniques , Food Contamination/analysis , Limit of Detection , Mycotoxins/analysis
16.
Talanta ; 278: 126510, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981154

ABSTRACT

A novel and robust electrochemical sensing tool for the determination of vismodegib (VIS), an anticancer drug, has been developed by integrating the selective recognition capabilities of molecularly imprinted polymer (MIP) and the sensitivity enhancement capability of metal-organic framework (MOF). Prior to this step, the electrochemical behavior of VIS was investigated using a bare glassy carbon electrode (GCE). It was observed that in 0.5 M H2SO4 solution as electrolyte, VIS has an oxidation peak around 1.3 V and the oxidation mechanism is diffusion controlled. The determination of VIS in a standard solution using a bare GCE showed a linear response in the concentration range from 2.5 µM to 100 µM, with a limit of detection (LOD) of 0.75 µM. Since sufficient sensitivity and selectivity could not be achieved with bare GCE, a MIP sensor was developed in the next step of the study. For this purpose, the GCE surface was first modified by drop casting with as-synthesized Co-MOF. Subsequently, a MIP network was synthesized via a thermal polymerization approach using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as monomer and VIS as template. MOFs are ideal electrode materials due to their controllable and diverse morphologies and modifiable surface properties. These characteristics enable the development of MIPs with more homogeneous binding sites and high affinity for target molecules. Integrating MOFs could help the performance of sensors with the desired stability and reproducibility. Electrochemical analysis revealed an observable enhancement of the output signal by the incorporation of MOF molecules, which is consistent with the sensitivity-enhancing role of MOF by providing more anchoring sites for the attachment of the polymer texture to the electrode surface. This MOF-MIP sensor exhibited impressive linear dynamic ranges ranging from 0.1 to 1.0 pM for VIS, with detection limits in the low picomolar range. In addition, the MOF-MIP sensor offers high accuracy, selectivity and precision for the determination of VIS, with no interference observed from complex media of serum samples. Additionally, in this study, Analytical GREEnness metric (AGREE), Analytical GREEnness preparation (AGREEprep) and Blue Applicability Grade Index (BAGI) were used to calculate the green profile score.

17.
Food Chem ; 459: 140339, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38986206

ABSTRACT

A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 µs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.

18.
J Colloid Interface Sci ; 675: 461-470, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38986319

ABSTRACT

Numerous applications require low humidity sensors that not only sensitive but also stable, small hysteresis, high resolution and fast response. However, most reported low humidity sensors cannot possess these properties at the same time. In this work, inspired by sea urchin, we developed an ionic liquid (IL) modified metal organic framework (UiO-66) based low humidity sensor. Owing to the synergistic effect of the hydrophilicity and ionic conductivity of IL and the steric hindrance effects of UiO-66, the optimized low humidity sensor simultaneously exhibits high response (47.5), small hysteresis (0.3 % RH), ultrafast response speed (0.2 s), high resolution (1 % RH), and excellent long-term stability (>120 days). In particular, the sensor has been proved to have potential applications in visual humidity detection and water source location. This work provides a preliminary design principle that will contribute to the preparation of high-performance low humidity sensing materials.

19.
Mikrochim Acta ; 191(8): 461, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990273

ABSTRACT

Three phenomena, namely coordination-induced emission (CIE), aggregation-induced emission (AIE), and inner filter effect (IFE), were incorporated into the design of a ratiometric and color tonality-based biosensor. Blue fluorescent Al-based metal-organic frameworks (FMIL-96) were prepared from non-emissive ligand and aluminum ions via CIE. Interestingly, the addition of tetracycline (TC) led to ratiometric detection and color tonality, as the blue emission at 380 nm was quenched (when excited at 350 nm) due to IFE, while the green-yellowish emission at 525 nm was enhanced due to AIE. Based on that, an ultra-sensitive visual-based color tonality mode with smartphone assistance was developed for detection of TC. The sensor exhibited a linear relationship within a broad range of 2.0 to 85.0 µM TC with a detection limit of 68.0 nM. TC in milk samples was quantified with high accuracy and precision. This integration of smartphone and visual fluorescence in solution is accurate, reliable, cost-effective, and time-saving, providing an alternative strategy for the semi-quantitative determination of TC on-site.

20.
J Environ Manage ; 366: 121802, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003907

ABSTRACT

This study proposes a novel one-pot hydrothermal impregnation strategy for surface decoration of waste derived pisum sativum biochar with zero‒dimensional Cu‒MOF Quantum dots (PBC‒HK), with an average particle size of 5.67 nm, for synergistic removal of an emerging sulfur containing drug pantoprazole (PTZ) and Basic Blue 26 (VB) dye within 80 min and 50 min of visible-light exposure, respectively. The designed Integrated Photocatalytic Adsorbent (IPA) presented an enhanced PTZ removal efficiency of 95.23% with a catalyst loading of 0.24 g/L and initial PTZ conc. 30 mg/L at pH 7, within 80 min via synergistic adsorption and photodegradation under visible-light exposure. While, on the other hand, 96.31% VB removal efficiency was obtained in 50 min with a catalyst dosage of 0.20 g/L, initial VB conc. 60 mg/L at pH 7 under similar irradiation conditions. An in-depth analysis of the synergistic adsorption and photocatalysis mechanism resulting in the shortened time for the removal of contaminants in the synergistic integrated model has been performed by outlining the various advantageous attributes of this strategy. The first-order degradation rate constant for PTZ was found to be 0.04846 min-1 and 0.04370 min-1 for PTZ and VB, respectively. Adsorption of contaminant molecules on the biochar (PS‒BC) surface can facilitate photodegradation by accelerating the kinetics, and photodegradation promotes regeneration of adsorption sites, contributing to an overall reduction in operation time for removal of contaminants. Besides enhancing the adsorption of targeted pollutants, the carbon matrix of IPAs serves as a surface for adsorption of intermediates of degradation, thereby minimizing the risk of secondary pollution. The photogenerated holes present in the VB is responsible for the generation of •OH radicals. While, the photogenerated electrons present in the CB are captured by Cu2+ of the MOF metal center, reducing it to Cu+, which is subsequently oxidized to produce additional •OH species in the aqueous medium. This process leads to effective charge separation of the photogenerated charge carriers and minimizes the probability of charge recombination as evident from photoluminescence (PL) analysis. Meanwhile, PL studies, EPR and radical trapping experiments indicate the predominant role of •OH radicals in the removal mechanism of PTZ and VB. The investigation of the degradation reaction intermediates was confirmed by HR‒LCMS, on the basis of which the plausible degradation pathway was elucidated in detail. Moreover, effects of pH, inorganic salts, other organic compounds and humic acid concentration have been investigated in detail. The environmental impact of the proposed method was comprehensively evaluated by ICP-OES analysis and TOC and COD removal studies. Furthermore, the economic feasibility and the cost-effectiveness of the catalyst was assessed to address the potential for large scale commercialization. Notably, this research not only demonstrates a rational design strategy for the utilization of solid waste into treasure via the fabrication of IPAs based on MOF Quantum dots (QDs) and waste-derived biochar, but also provides a practical solution for real wastewater treatment systems for broader industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL