Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(15): 18918-18926, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588534

ABSTRACT

This study unveils a novel role of bare graphite as a catalyst in glycerol electrooxidation and hydrogen evolution reactions, challenging the prevailing notion that current collectors employed in electrolyzers are inert. Half-cell experiments elucidate the feasibility of glycerol oxidation and hydrogen production on bulk graphite electrodes at potentials exceeding 1.7 V. The investigation of varying glycerol concentrations (0.05 to 1.5 mol L-1) highlights a concentration-dependent competition between glycerol electrooxidation and oxygen evolution reactions. Employing an H-type glycerol electrolyzer, polarization curves reveal significant activation polarization attributed to the low electroactivity of the anode. Glycerol electrolysis at different concentrations yields diverse product mixtures, including formate, glycolate, glycerate, and lactate at the anode, with concurrent hydrogen generation at the cathode. The anolyte composition changes with glycerol concentration, resulting in less-oxidized compounds at higher concentrations and more oxidized compounds at lower concentrations. The cell voltage also influences the product formation selectivity, with an increased voltage favoring more oxidized compounds. The glycerol concentration also affects hydrogen production, with lower concentrations yielding higher hydrogen amounts, peaking at 3.5 V for 0.05 mol L-1. This model quantitatively illustrates graphite's contribution to current and product generation in glycerol electrolyzers, emphasizing the significance of background current and products originating from current collectors if in contact with the reactants. These results have an impact on the efficiency of the electrolyzer and raise questions regarding possible extra non-noble "nonparticipating" current collectors that could affect overall performance. This research expands our understanding of electrocatalysis on graphite surfaces with potential applications in optimizing electrolyzer configurations for enhanced efficiency and product selectivity.

2.
Chemistry ; 22(10): 3470-3477, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26841264

ABSTRACT

Metal-free catalysts are of great importance and alternative candidates to conventional metal-based catalysts for many reactions. Herein, several types of metal-organic frameworks have been exploited as templates/precursors to afford porous carbon materials with various nitrogen dopant forms and contents, degrees of graphitization, porosities, and surface areas. Amongst these materials, the PCN-224-templated porous carbon material optimized by pyrolysis at 700 °C (denoted as PCN-224-700) is composed of amorphous carbon coated with well-defined graphene layers, offering a high surface area, hierarchical pores, and high nitrogen content (mainly, pyrrolic nitrogen species). Remarkably, as a metal-free catalyst, PCN-224-700 exhibits a low activation energy and superior activity to most metallic catalysts in the catalytic reduction of 4-nitrophenol to 4-aminophenol. Theoretical investigations suggest that the content and type of the nitrogen dopant play crucial roles in determining the catalytic performance and that the pyrrolic nitrogen species makes the dominant contribution to this activity, which explains the excellent efficiency of the PCN-224-700 catalyst well.

SELECTION OF CITATIONS
SEARCH DETAIL