Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39091864

ABSTRACT

In recent years, methamphetamine METH misuse in the US has been rapidly increasing and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into a decrease in DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1), and vesicular monoamine transporter-2 (VMAT2) in METH neurotoxicity in male Sprague Dawley rats. To also assess individual differences in response to METH's neurotoxic effects, a large group of rats was treated with binge METH or saline and sacrificed 1h or 24h later. This study is the first to show that binge METH alters the levels and subcellular localization of CDCrel-1 and that CDCrel-1 interacts with VMAT2 and increases its levels at the plasma membrane. Furthermore, we found wide individual differences in the responses of measured indices to METH. Proteomic analysis of VMAT-2-associated proteins revealed upregulation of several proteins involved in the exocytosis/endocytosis cycle. The results suggest that at 1h after METH binge, DAergic neurons are engaged in counteracting METH-induced toxic effects, including oxidative stress- and hyperthermia-induced inhibition of synaptic vesicle cycling, with the responses varying between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity which, in turn, will aid treating humans suffering from METH use disorder and its neurological consequences.

2.
Front Pharmacol ; 12: 770319, 2021.
Article in English | MEDLINE | ID: mdl-34880760

ABSTRACT

Hyperthermia is a common confounding factor for assessing the neurotoxic effects of methamphetamine (METH) in mammalian models. The development of new models of methamphetamine neurotoxicity using vertebrate poikilothermic animals should allow to overcome this problem. The aim of the present study was to develop a zebrafish model of neurotoxicity by binge-like methamphetamine exposure. After an initial testing at 20 and 40 mg/L for 48 h, the later METH concentration was selected for developing the model and the effects on the brain monoaminergic profile, locomotor, anxiety-like and social behaviors as well as on the expression of key genes of the catecholaminergic system were determined. A concentration- and time-dependent decrease in the brain levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) was found in METH-exposed fish. A significant hyperactivity was found during the first hour of exposure, followed 3 h after by a positive geotaxis and negative scototaxis in the novel tank and in the light/dark paradigm, respectively. Moreover, the behavioral phenotype in the treated fish was consistent with social isolation. At transcriptional level, th1 and slc18a2 (vmat2) exhibited a significant increase after 3 h of exposure, whereas the expression of gfap, a marker of astroglial response to neuronal injury, was strongly increased after 48 h exposure. However, no evidences of oxidative stress were found in the brain of the treated fish. Altogether, this study demonstrates the suitability of the adult zebrafish as a model of METH-induced neurotoxicity and provides more information about the biochemical and behavioral consequences of METH abuse.

3.
Exp Neurol ; 345: 113811, 2021 11.
Article in English | MEDLINE | ID: mdl-34298012

ABSTRACT

Methamphetamine (METH) is a highly addictive and powerful central nervous system psychostimulant with no FDA-approved pharmacotherapy. Parkin is a neuroprotective protein and its loss of function contributes to Parkinson's disease. This study used 3-month-old homozygous parkin knockout (PKO) rats to determine whether loss of parkin protein potentiates neurotoxicity of chronic METH to the nigrostriatal dopamine pathway. PKO rats were chronically treated with 10 mg/kg METH for 10 consecutive days and assessed for neurotoxicity markers in the striatum on the 5th and 10th day of withdrawal from METH. The PKO rats showed higher METH-induced hyperthermia; however, they did not display augmented deficits in dopaminergic and serotonergic neurotoxicity markers, astrocyte activation or decreased mitochondrial enzyme levels as compared to wild-type (WT) rats. Interestingly, saline-treated PKO rats had lower levels of dopamine (DA) as well as mitochondrial complex I and II levels while having increased basal levels of glial fibrillary acidic protein (GFAP), a marker of gliosis. These results indicate PKO display a certain resistance to METH neurotoxicity, possibly mediated by lowered DA levels and downregulated mitochondria.


Subject(s)
Central Nervous System Stimulants/toxicity , Dopamine/metabolism , Locomotion/drug effects , Methamphetamine/toxicity , Ubiquitin-Protein Ligases/deficiency , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Central Nervous System Stimulants/administration & dosage , Dopamine/genetics , Drug Administration Schedule , Hyperthermia, Induced/adverse effects , Hyperthermia, Induced/methods , Locomotion/physiology , Male , Methamphetamine/administration & dosage , Rats , Rats, Long-Evans , Rats, Transgenic , Synaptosomes/drug effects , Synaptosomes/metabolism , Ubiquitin-Protein Ligases/genetics
4.
Neurotoxicology ; 84: 208-217, 2021 05.
Article in English | MEDLINE | ID: mdl-33819551

ABSTRACT

OBJECTIVE: Methamphetamine is used extensively around the world as a psychostimulant. The complications related to methamphetamine include methamphetamine-induced neurotoxicity, mainly involving intraneuronal processes, such as oxidative stress and excitotoxicity. Curcumin is effective against neuronal injury due to its antioxidant, anti-inflammatory effects. In this study, we examined the protective effects of curcumin against methamphetamine neurotoxicity. METHODS: Sixty male Wistar rats were divided into the following groups: control (n = 12), DMSO (n = 12), methamphetamine (n = 12), and methamphetamine + curcumin (100 and 200 mg/kg, respectively, intraperitoneal [IP]; n = 12). Neurotoxicity was induced by 40 mg/kg of methamphetamine administrated through 4 injections (4 × 10 mg/kg, q2h, IP). Curcumin (100 and 200 mg/kg) was administered at 7 days after the last methamphetamine injection. By using a Morris water maze task, the hippocampus-dependent memory and spatial learning were evaluated 1 day after the last curcumin injection. Then, the animal brains were isolated for biochemical measurements, as well as glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor protein-1(Iba-1) and caspase-3 immunohistochemical staining. RESULTS: The current study demonstrated that administration of curcumin significantly attenuates spatial memory impairment (P < 0.01) following methamphetamine neurotoxicity. Curcumin caused a significant increase in the levels of superoxide dismutase and glutathione peroxidase (P < 0.05). However, it decreased tumor necrosis factor (TNF-α) (P < 0.05) and malondialdehyde (P < 0.01) levels as compared to the methamphetamine group. Also, curcumin significantly reduced Iba-1 (P < 0. 01), GFAP and caspase-3 positive cells in the hippocampus (P < 0.001). CONCLUSION: Curcumin exerted neuroprotective effects on methamphetamine neurotoxicity because of its antioxidant and anti-inflammatory effect.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Curcumin/pharmacology , Methamphetamine/toxicity , Neuroprotective Agents/pharmacology , Spatial Memory/drug effects , Animals , Apoptosis/physiology , Brain/drug effects , Brain/metabolism , Central Nervous System Stimulants/toxicity , Dose-Response Relationship, Drug , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Wistar , Spatial Memory/physiology
5.
J Mol Neurosci ; 67(1): 133-141, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30456731

ABSTRACT

Methamphetamine (METH) known as a highly neurotoxic compound associated with irreversible brain cell damage that results in neurological and psychiatric abnormalities. The mechanisms of METH intoxication mainly involve intraneuronal events including oxidative stress, excitotoxicity, and dopamine oxidation. Based on recent studies, H2S can protect neurons through anti-inflammatory, antioxidant, and antiapoptotic mechanisms. Therefore, we aimed to study the effects of protection of H2S against METH neurotoxicity. The 72 male Wistar rats were randomly allocated into six groups: control (n, 12), H2S (n, 12), METH (n, 12), METH + H2S 1 mg/kg (n, 12), METH + H2S 5 mg/kg (n, 12), and METH + H2S 10 mg/kg (n, 12) groups, (NaHS as a H2S donor; 1, 5, 10 mg/kg). METH neurotoxicity was induced by 40 mg/kg of METH in four intraperitoneal (IP) injections (e.g., 4 × 10 mg/kg q. 2 h, IP). NaHS was administered at 30 min, 24 h, and 48 h after the final injection of METH. Seven days after METH injection, the brains were removed for biochemical assessments, glial fibrillary acidic protein (GFAP), and caspase-3 immunohistochemistry staining. H2S treatment could significantly increase both superoxide dismutase and glutathione (P < 0.01), and a reduction was observed in malondialdehyde (P < 0.05) and TNF-α (P < 0.01) versus the METH group. Moreover, H2S could significantly decrease caspase-3 and GFAP-positive cells in the CA1 region of the hippocampus (P < 0.01) compared to the METH group. According to the findings, H2S makes significant neuroprotective impacts on METH neurotoxicity due to its antioxidant and anti-inflammatory activities.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Hippocampus/drug effects , Hydrogen Sulfide/pharmacology , Methamphetamine/toxicity , Neuroprotective Agents/pharmacology , Animals , Apoptosis , Hippocampus/cytology , Hippocampus/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
6.
Neurochem Res ; 43(12): 2252-2259, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30259275

ABSTRACT

Methamphetamine (METH) is a stimulant drug, which can cause neurotoxicity and increase the risk of neurodegenerative disorders. The mechanisms of acute METH intoxication comprise intra-neuronal events including oxidative stress, dopamine oxidation, and excitotoxicity. According to recent studies, crocin protects neurons by functioning as an anti-oxidant, anti-inflammatory, and anti-apoptotic compound. Accordingly, this study aimed to determine if crocin can protect against METH-induced neurotoxicity. Seventy-two male Wistar rats that weighed 260-300 g were randomly allocated to six groups of control (n = 12), crocin 90 mg/kg group (n = 12), METH (n = 12), METH + crocin 30 mg/kg (n = 12), METH + crocin 60 mg/kg (n = 12), and METH + crocin 90 mg/kg (n = 12). METH neurotoxicity was induced by 40 mg/kg of METH in four injections (e.g., 4 × 10 mg/kg q. 2 h, IP). Crocin was intraperitoneally (IP) injected at 30 min, 24 h, and 48 h after the final injection of METH. Seven days after METH injection, the rats' brains were removed for biochemical assessment using the ELISA technique, and immunohistochemistry staining was used for caspase-3 and glial fibrillary acidic protein (GFAP) detection. Crocin treatment could significantly increase superoxide dismutase (P < 0.05) and glutathione (P < 0.01) levels and reduce malondialdehyde and TNF-α in comparison with the METH group (P < 0.05). Moreover, crocin could significantly decline the level of caspase-3 and GFAP-positive cells in the CA1 region (P < 0.01). According to the results, crocin exerts neuroprotective effects on METH neurotoxicity via the inhibition of apoptosis and neuroinflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Apoptosis/physiology , Carotenoids/pharmacology , Hippocampus/metabolism , Methamphetamine/toxicity , Animals , Apoptosis/drug effects , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Central Nervous System Stimulants/toxicity , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/pathology , Male , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Rats , Rats, Wistar
7.
Iran J Basic Med Sci ; 21(4): 434-438, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29796230

ABSTRACT

OBJECTIVES: Methamphetamine (METH) is a powerful stimulant drug that directly affects the brain and induces neurological deficits. B12 is a water-soluble vitamin (vit) that is reported to attenuate neuronal degeneration. The goal of the present study is to investigate the effect of vitamin B12 on METH's neurodegenerative changes. MATERIALS AND METHODS: Two groups of 6 animals received METH (10 mg/kg, interaperitoneally (IP)) four times with a 2 hr interval. Thirty mins before METH administration, vit B12 (1 mg/kg) or normal saline were injected IP. Animals were sacrificed 3 days after the last administration. Caspase proteins levels were measured by Western blotting. Also, samples were examined by TUNEL assay to detect the presence of DNA fragmentation. Reduced glutathione (GSH) was also determined by the Ellman method. RESULTS: The pathological findings showed that vit B12 attenuates the gliosis induced by METH. Vit B12 administration also significantly decreased the apoptotic index in the striatum and the cerebral cortex (P<0.001). It also reduced caspase markers compared to the control (P<0.01 and P<0.001, respectively). Interestingly, co-administration of METH and Vit B12 elevates the levels of GSH in both regions of the brain and returned it to normal levels compared to the METH group. CONCLUSION: The current study suggests that parenteral vit B12 at safe doses may be a promising treatment for METH-induced brain damage via inhibition of neuron apoptosis and increasing the reduced GSH level. Research focusing on the mechanisms involved in the protective responses of vit B12 can be helpful in providing a novel therapeutic agent against METH-induced neurotoxicity.

8.
Neurochem Int ; 108: 254-265, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28457879

ABSTRACT

The cystine/glutamate antiporter (system Xc-, Sxc) transports cystine into cell in exchange for glutamate. Since xCT is a specific subunit of Sxc, we employed xCT knockout mice and investigated whether this antiporter affected methamphetamine (MA)-induced dopaminergic neurotoxicity. MA treatment significantly increased striatal oxidative burdens in wild type mice. xCT inhibitor [i.e., S-4-carboxy-phenylglycine (CPG), sulfasalazine] or an xCT knockout significantly protected against these oxidative burdens. MA-induced increases in Iba-1 expression and Iba-1-labeled microglial immunoreactivity (Iba-1-IR) were significantly attenuated by CPG or sulfasalazine administration or xCT knockout. CPG or sulfasalazine significantly attenuated MA-induced TUNEL-positive cell populations in the striatum of Taconic ICR mice. The decrease in excitatory amino acid transporter-2 (or glutamate transporter-1) expression and increase in glutamate release were attenuated by CPG, sulfasalazine or xCT knockout. In addition, CPG, sulfasalazine or xCT knockout significantly protected against dopaminergic loss (i.e., decreases in tyrosine hydroxylase expression and immunoreactivity, and an increase in dopamine turnover rate) induced by MA. However, CPG, sulfasalazine or xCT knockout did not significantly affect the impaired glutathione system [i.e., decrease in reduced glutathione (GSH) and increase in oxidized glutathione (GSSG)] induced by MA. Our results suggest that Sxc mediates MA-induced neurotoxicity via facilitating oxidative stress, microgliosis, proapoptosis, and glutamate-related toxicity.


Subject(s)
Amino Acid Transport System y+/physiology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , Methamphetamine/toxicity , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Glutamic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Oxidative Stress/drug effects , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
9.
J Neurochem ; 136(3): 510-25, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26465779

ABSTRACT

Exposure to binge methamphetamine (METH) can result in a permanent or transient loss of dopaminergic (DAergic) markers such as dopamine (DA), dopamine transporter, and tyrosine hydroxylase (TH) in the striatum. We hypothesized that the METH-induced loss of striatal DAergic markers was, in part, due to a destabilization of microtubules (MTs) in the nigrostriatal DA pathway that ultimately impedes anterograde axonal transport of these markers. To test this hypothesis, adult male Sprague-Dawley rats were treated with binge METH or saline in the presence or absence of epothilone D (EpoD), a MT-stabilizing compound, and assessed 3 days after the treatments for the levels of several DAergic markers as well as for the levels of tubulins and their post-translational modifications (PMTs). Binge METH induced a loss of stable long-lived MTs within the striatum but not within the substantia nigra pars compacta (SNpc). Treatment with a low dose of EpoD increased the levels of markers of stable MTs and prevented METH-mediated deficits in several DAergic markers in the striatum. In contrast, administration of a high dose of EpoD appeared to destabilize MTs and potentiated the METH-induced deficits in several DAergic markers. The low-dose EpoD also prevented the METH-induced increase in striatal DA turnover and increased behavioral stereotypy during METH treatment. Together, these results demonstrate that MT dynamics plays a role in the development of METH-induced losses of several DAergic markers in the striatum and may mediate METH-induced degeneration of terminals in the nigrostriatal DA pathway. Our study also demonstrates that MT-stabilizing drugs such as EpoD have a potential to serve as useful therapeutic agents to restore function of DAergic nerve terminals following METH exposure when administered at low doses. Administration of binge methamphetamine (METH) negatively impacts neurotransmission in the nigrostriatal dopamine (DA) system. The effects of METH include decreasing the levels of DAergic markers in the striatum. We have determined that high-dose METH destabilizes microtubules in this pathway, which is manifested by decreased levels of acetylated (Acetyl) and detyrosinated (Detyr) α-tubulin (I). A microtubule stabilizing agent epothilone D protects striatal microtubules form the METH-induced loss of DAergic markers (II). These findings provide a new strategy for protection form METH - restoration of proper axonal transport.


Subject(s)
Central Nervous System Stimulants/administration & dosage , Corpus Striatum/cytology , Corpus Striatum/drug effects , Dopamine/metabolism , Epothilones/pharmacology , Methamphetamine/administration & dosage , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Exploratory Behavior/drug effects , Glial Fibrillary Acidic Protein/metabolism , Homovanillic Acid/metabolism , Male , Microtubules/drug effects , Motor Activity/drug effects , Rats , Rats, Sprague-Dawley , Substantia Nigra/drug effects , Tubulin/metabolism , Tyrosine 3-Monooxygenase/metabolism
10.
Exp Neurol ; 254: 180-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24508558

ABSTRACT

Methamphetamine (METH) exposure results in dopaminergic neurotoxicity in striatal regions of the brain, an effect that has been linked to an increased risk of Parkinson's disease. Various aspects of neuroinflammation, including astrogliosis, are believed to be contributory factors in METH neurotoxicity. METH interacts with sigma receptors at physiologically relevant concentrations and treatment with sigma receptor antagonists has been shown to mitigate METH-induced neurotoxicity in rodent models. Whether these compounds alter the responses of glial cells within the central nervous system to METH however has yet to be determined. Therefore, the purpose of the current study was to determine whether the sigma receptor antagonist, SN79, mitigates METH-induced striatal reactive astrogliosis. Male, Swiss Webster mice treated with a neurotoxic regimen of METH exhibited time-dependent increases in striatal gfap mRNA and concomitant increases in GFAP protein, indicative of astrogliosis. This is the first report that similar to other neurotoxicants that induce astrogliosis through the activation of JAK2/STAT3 signaling by stimulating gp-130-linked cytokine signaling resulting from neuroinflammation, METH treatment also increases astrocytic oncostatin m receptor (OSMR) expression and the phosphorylation of STAT3 (Tyr-705) in vivo. Pretreatment with SN79 blocked METH-induced increases in OSMR, STAT3 phosphorylation and astrocyte activation within the striatum. Additionally, METH treatment resulted in striatal cellular degeneration as measured by Fluoro-Jade B, an effect that was mitigated by SN79. The current study provides evidence that sigma receptor antagonists attenuate METH-induced astrocyte activation through a pathway believed to be shared by various neurotoxicants.


Subject(s)
Benzoxazoles/pharmacology , Gliosis/chemically induced , Gliosis/drug therapy , Methamphetamine/toxicity , Piperazines/pharmacology , Receptors, sigma/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Astrocytes/drug effects , Astrocytes/pathology , Central Nervous System Stimulants/toxicity , Corpus Striatum/pathology , Cytokine Receptor gp130/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Drug Interactions , Fever/chemically induced , Fever/drug therapy , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Male , Mice , Oncostatin M Receptor beta Subunit/genetics , Oncostatin M Receptor beta Subunit/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL