Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
1.
Molecules ; 29(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125072

ABSTRACT

Musculoskeletal infections (MIs) are among the most difficult-to-treat staphylococcal diseases due to antibiotic resistance. This has encouraged the development of innovative strategies, such as combination therapy, to combat MI. The aim of this study was to investigate the in vitro antistaphylococcal activity of anti-inflammatory drugs and the combined antimicrobial effect of celecoxib and oxacillin. The minimum inhibitory concentrations (MICs) of 17 anti-inflammatory drugs against standard strains and clinical isolates of S. aureus, including methicillin-resistant strains (MRSAs), were determined using the broth microdilution method. The fractional inhibitory concentration indices (FICIs) were evaluated using checkerboard assays. Celecoxib produced the most potent antistaphylococcal effect against all tested strains (MICs ranging from 32 to 64 mg/L), followed by that of diacerein against MRSA3 and MRSA ATCC 33592 (MIC 64 mg/L). Several synergistic effects were observed against the tested S. aureus strains, including MRSA (FICI ranging from 0.087 to 0.471). The strongest synergistic interaction (FICI 0.087) was against MRSA ATCC 33592 at a celecoxib concentration of 2 mg/L, with a 19-fold oxacillin MIC reduction (from 512 to 26.888 mg/L). This is the first report on the combined antistaphylococcal effect of celecoxib and oxacillin. These findings suggest celecoxib and its combination with oxacillin as perspective agents for research focused on the development of novel therapies for MI caused by S. aureus. This study further indicates that celecoxib could resensitize certain MRSA strains, in some cases, to be susceptible to ß-lactams (e.g., oxacillin) that were not previously tested. It is essential to mention that the in vitro concentrations of anti-inflammatory drugs are higher than those typically obtained in patients. Therefore, an alternative option for its administration could be the use of a drug delivery system for the controlled slow release from an implant at the infection site.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Celecoxib , Drug Synergism , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Oxacillin , Staphylococcus aureus , Oxacillin/pharmacology , Celecoxib/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Anti-Inflammatory Agents/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
2.
BMC Biotechnol ; 24(1): 47, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978013

ABSTRACT

The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Delivery Systems , Liposomes , Methicillin-Resistant Staphylococcus aureus , Vancomycin , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Vancomycin/pharmacology , Vancomycin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Liposomes/chemistry , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Drug Liberation
3.
Antibiotics (Basel) ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39061299

ABSTRACT

Bovine mastitis (BM) has caused huge economic and financial losses in the dairy industry worldwide, with Staphylococcus aureus as one of its major pathogens. BM treatment still relies on antibiotics and its extensive use often generates methicillin-resistant S. aureus (MRSA) and mupirocin-resistant S. aureus (MuRSA). This study compared the antimicrobial resistance trend in coagulase-positive Stapholococci (CoPS) isolated from BM milk in conventional and organic dairy farms and checked prevalence of MRSA and MuRSA. A total of 163 presumptive Staphylococci were isolated, wherein 11 out of 74 from 4 conventional farms (CF1, CF2, CF3, CF4) and 17 out of 89 from 3 organic farms (OF1, OF2, OF3) exhibited coagulase activity. Multiplex-PCR amplification confirmed at least one coagulase-positive isolate from CF1, CF2, CF3, CF4, and OF1 as S. aureus, denoted by the presence of the nuc gene. Three isolates from CF2 contained the mecA gene, indicating MRSA prevalence, while the MuRSA gene marker, mupA, was not detected in any of the isolates. Antimicrobial testing showed that conventional farm isolates were more resistant to antibiotics, especially ampicillin and tetracycline. This suggests a risk of developing multidrug resistance in dairy farms if antibiotic use is not properly and strictly monitored and regulated.

4.
Antimicrob Agents Chemother ; : e0061124, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046236

ABSTRACT

As methicillin-resistant Staphylococcus aureus (MRSA) exhibits formidable resistance to many drugs, the imperative for alternative therapeutic strategies becomes increasingly evident. At the heart of our study is the identification of a novel inhibitor through fluorescence anisotropy assays, specifically targeting the crucial multiple gene regulator A (MgrA) regulatory network in S. aureus. Isorhapontigenin (Iso), a natural compound, exhibits outstanding inhibitory efficacy, modulating bacterial virulence pathways without exerting direct bactericidal activity. This suggests a paradigm shift toward attenuating virulence instead of purely focusing on bacterial elimination. Through comprehensive in vitro and in vivo evaluations, we elucidated the complex interplay between Iso and MgrA, leading to reduced S. aureus adhesion, and overall virulence. At the cellular level, Iso offers significant protection to A549 cells infected with S. aureus, reducing cellular damage. Importantly, Iso augments the chemotaxis of neutrophils, curtailing the immune evasion capabilities of S. aureus. Furthermore, in vivo investigations highlight the notable effectiveness of Iso against MRSA-induced pneumonia and within the Galleria mellonella infection model, underscoring its pivotal role in the evolving realm of antibacterial drug discovery. Significantly, when Iso is used in combination with vancomycin, it outperforms its solo application, indicating a more pronounced therapeutic impact. This seminal research emphasizes Iso's potential as a primary defense against the surge of multidrug-resistant pathogens, heralding new prospects in antimicrobial therapy.

5.
J Agric Food Chem ; 72(30): 16569-16582, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39031091

ABSTRACT

Staphylococcus aureus (S. aureus) is a kind of pathogenic bacteria which can lead to food poisoning, hospital, and community infections. S. aureus and methicillin-resistant S. aureus (MRSA) have become headaches for public health worldwide. Therefore, strengthening the detection of S. aureus and MRSA is a critical step to prevent and control its spread and infection. This review summarized multiple detection methods (electrochemical, optical, and other biosensors) for sensitive and efficient detection of nonresistant and resistant S. aureus. First, we have introduced the principle and methods of detection platform for S. aureus and MRSA. We also contrasted various detection strategies. Finally, the current situation and prospect of S. aureus and MRSA detection in the future are explored in depth, and its development direction of detection methods is also predicted. In this review, we found that although biosensors have shown tremendous brilliance in the field of monitoring, they are currently in the experimental stage. It can be certain that we are very close to entering the commercialization stage. The point-of care testing available to nonprofessionals will become a new direction. We firmly believe that the monitoring system will be more perfect and stable and public life will be healthier and safer.


Subject(s)
Biosensing Techniques , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnosis , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Humans
6.
Antibiotics (Basel) ; 13(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927211

ABSTRACT

The issue of bacterial infections in COVID-19 patients has received increasing attention. Scant data are available on the impact of bacterial superinfection and antibiotic administration on the outcome of hospitalized COVID-19 patients. We conducted a literature review from 1 January 2022 to 31 March 2024 to assess the current burden of bacterial infection and the evidence for antibiotic use in hospitalized COVID-19 patients. Published articles providing data on antibiotic use in COVID-19 patients were identified through computerized literature searches with the search terms [(antibiotic) AND (COVID-19)] or [(antibiotic treatment) AND (COVID-19)]. PubMed and SCOPUS databases were searched from 1 January 2022 to 31 March 2024. No attempt was made to obtain information about unpublished studies. English language restriction was applied. The quality of the included studies was evaluated by the tool recommended by the Joanna Briggs Institute. Both quantitative and qualitative information were summarized by means of textual descriptions. Five hundred fifty-one studies were identified, and twenty-nine studies were included in this systematic review. Of the 29 included studies, 18 studies were on the prevalence of bacterial infection and antibiotic use in hospitalized COVID-19 patients; 4 studies reported on the efficacy of early antibiotic use in COVID-19; 4 studies were on the use of sepsis biomarkers to improve antibiotic use; 3 studies were on the efficacy of antimicrobial stewardship programs and predictive models among COVID-19-hospitalized patients. The quality of included studies was high in 35% and medium in 62%. High rates of hospital-acquired infections were reported among COVID-19 patients, ranging between 7.5 and 37.7%. A high antibiotic resistance rate was reported among COVID-19 patients developing hospital-acquired infections, with a high in-hospital mortality rate. The studies evaluating multi-faceted antimicrobial stewardship interventions reported efficacy in decreasing antibiotic consumption and lower in-hospital mortality.

7.
Int J Med Microbiol ; 315: 151623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781847

ABSTRACT

OBJECTIVES: Staphylococcus aureus (S. aureus) spreads worldwide and occurrence of mastitis caused by it holds significant implications for public health. We aim to reveal the molecular typing, antibiotic resistance and virulence gene profile of S. aureus causing mastitis through investigation. METHODS: A total of 200 isolates of S. aureus were collected from outpatients infected with mastitis in a hospital in Beijing from 2020.7 to 2021.7. The molecular characteristics were analyzed by MLST and spa typing, virulence genes were screened by PCR, antibiotic susceptible test was performed by VITEK® 2 Compact system and phylogenetic analysis was performed by MEGA11 and iTOL. RESULTS: Nineteen sequence types (STs) belonging to 9 clone complexes (CCs) were identified. ST22 was the most dominant clone (77.0%, 154/200). MRSA accounted for 19.0% (38/200) and 89.5% (34/38) of MRSA isolates belonged to CC22 and CC59. The isolates had relatively low levels of antibiotic resistance, with the exception of ß-lactams and macrolides with resistance rates above 50.0%. The carrying rate of pvl in the ST22-MRSA strains were 84.2% and the detection rates of seb and pvl in the MRSA isolates were significantly higher than those in the MSSA isolates, while the hlg, fnbA and sdrD showed opposite results. Whole genome sequenced specimens of MRSA strains X4 and B5 show the same evolutionary origin as ST22 EMRSA-15 (HE681097), which is popular in Europe. CONCLUSIONS: The method based on molecular epidemiology is an important tool for tracking the spread of S. aureus infections. We need to be alert to the major MRSA clones CC22 and CC59 in the region and be vigilant to the possible pandemic and spread of ST22 EMRSA-15.


Subject(s)
Anti-Bacterial Agents , Community-Acquired Infections , Mastitis , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Staphylococcal Infections , Staphylococcus aureus , Virulence Factors , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Female , Beijing/epidemiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/classification , Staphylococcus aureus/drug effects , Prevalence , Virulence Factors/genetics , Mastitis/microbiology , Mastitis/epidemiology , Anti-Bacterial Agents/pharmacology , Community-Acquired Infections/microbiology , Community-Acquired Infections/epidemiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/classification , China/epidemiology
8.
Pharmaceutics ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675186

ABSTRACT

Melissa officinalis is an important medicinal plant that is used and studied intensively due to its numerous pharmacological effects. This plant has numerous active compounds with biomedical potential; some are volatile, while others are sensitive to heat or oxygen. Therefore, to increase stability and prolong biological activities, the natural extract can be loaded into various nanostructured systems. In this study, different loading systems were obtained from mesoporous silica, like Mobile Composition of Matter family (MCM) with a hexagonal (MCM-41) or cubic (MCM-48) pore structure, simple or functionalized with amino groups (using 3-aminopropyl) such as triethoxysilane (APTES). Thus, the four materials were characterized from morphological and structural points of view by scanning electron microscopy, a BET analysis with adsorption-desorption isotherms, Fourier-transform infrared spectroscopy (FTIR) and a thermogravimetric analysis coupled with differential scanning calorimetry. Natural extract from Melissa officinalis was concentrated and analyzed by High-Performance Liquid Chromatography to identify the polyphenolic compounds. The obtained materials were tested against Gram-negative bacteria and yeasts and against both reference strains and clinical strains belonging to Gram-positive bacteria that were previously isolated from intra-hospital infections. The highest antimicrobial efficiency was found against Gram-positive and fungal strains. Good activity was also recorded against methicillin-resistant S. aureus, the Melissa officinalis extract inhibiting the production of various virulence factors.

9.
Antibiotics (Basel) ; 13(3)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38534699

ABSTRACT

Intracellular survival and immune evasion are typical features of staphylococcal infections. USA300 is a major clone of methicillin-resistant S. aureus (MRSA), a community- and hospital-acquired pathogen capable of disseminating throughout the body and evading the immune system. Carnosine is an endogenous dipeptide characterized by antioxidant and anti-inflammatory properties acting on the peripheral (macrophages) and tissue-resident (microglia) immune system. In this work, RAW 264.7 murine macrophages were infected with the USA300 ATCC BAA-1556 S. aureus strain and treated with 20 mM carnosine and/or 32 mg/L erythromycin. Stable small colony variant (SCV) formation on blood agar medium was obtained after 48 h of combined treatment. Whole genome sequencing of the BAA-1556 strain and its stable derivative SCVs when combining Illumina and nanopore technologies revealed three single nucleotide differences, including a nonsense mutation in the shikimate kinase gene aroK. Gene expression analysis showed a significant up-regulation of the uhpt and sdrE genes in the stable SCVs compared with the wild-type, likely involved in adaptation to the intracellular milieu.

10.
Bioelectrochemistry ; 157: 108674, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460467

ABSTRACT

Early monitoring of MRSA can effectively mitigate the disease risk by using Penicillin-binding protein 2a (PbP2a) biomarker. Diamino naphthalene-AuNPs decorated graphene (AuNPsGO-DN) nanocomposite was synthesized for a rapid and sensitive immunosensor detecting PbP2a. The synthesized AuNPsGO-DN nanocomposites were characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and X-ray diffraction spectroscopy (XRD). Electrochemical characterization done with cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrical impedance spectroscopy (EIS) techniques. Anti-PbP2a monoclonal antibodies immobilized at AuNPsGO-DN/GCE via covalent bonding. AuNPs enhanced the electrode surface area and the antibodies' loading. Mercaptopropionic acid (MPA) was a linker between the AuNPs and antibodies, orientated the antibodies as opposite to the PbP2a antigen, and improved the sensitivity and specificity. The antiPbP2a/MPA/AuNPsGO-DN/GCE electrode displayed sensitive and selective detection towards the PbP2a antigen in phosphate buffer saline (PBS pH 7.4). The broad linear range from 0.01 to 8000 pg/mL was obtained with LOD of 0.154 pg/mL and 0.0239 pg/mL, respectively. A label-free, simple, and sensitive immunosensor was developed with a 98-106 % recovery rate in spiked biological samples. It shows the potential applicability of the developed immunoelectrode.


Subject(s)
Biosensing Techniques , Graphite , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Nanocomposites , Graphite/chemistry , Gold/chemistry , Electrochemical Techniques/methods , Spectroscopy, Fourier Transform Infrared , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Immunoassay , Antibodies , Nanocomposites/chemistry , Limit of Detection
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123968, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330510

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is gram positive bacteria and leading cause of a wide variety of diseases. It is a common cause of hospitalized and community-acquired infections. Development of increasing antibiotic-resistance by methicillin-resistant S. aureus (MRSA) strains demand to develop alternate novel therapies. Bacteriophages are now widely used as antibacterial therapies against antibiotic-resistant gram-positive pathogens. So, there is an urgent need to find fast detection techniques to point out phage susceptible and resistant strains of methicillin-resistant S. aureus (MRSA) bacteria. Samples of two separate strains of bacteria, S. aureus, in form of pellets and supernatant, were used for this purpose. Strain-I was resistant to phage, while the other (strain-II) was sensitive. Surface Enhanced Raman Spectroscopy (SERS) has detected significant biochemical changes in these bacterial strains of pellets and supernatants in the form of SERS spectral features. The protein portion of these two types of strains of methicillin-resistant S. aureus (MRSA) in their relevant pellets and supernatants is major distinguishing biomolecule as shown by their representative SERS spectral features. In addition, multivariate data analysis techniques such as principal component analysis (PCA) and a partial least squares-discriminant analysis (PLS-DA) were found to be helpful in identifying and characterizing various strains of S. aureus which are sensitive and resistant to bacteriophage with 100% specificity, 100% accuracy, and 99.8% sensitivity in case of SERS spectral data sets of bacterial cell pellets. Moreover, in case of supernatant samples, the results of PLS-DA model including 95.5% specificity, 96% sensitivity, and 96.5% accuracy are obtained.


Subject(s)
Bacteriophages , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Spectrum Analysis, Raman , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests
12.
Infect Drug Resist ; 17: 259-273, 2024.
Article in English | MEDLINE | ID: mdl-38283112

ABSTRACT

Purpose: Staphylococcus aureus is a commensal bacteria species that can cause various illnesses, from mild skin infections to severe diseases, such as bacteremia. The distribution and antimicrobial resistance (AMR) pattern of S. aureus varies by population, time, geographic location, and hospital wards. In this study, we elucidated the epidemiology and AMR patterns of S. aureus isolated from a general hospital in Vietnam. Methods: This was a cross-sectional study. Data on all S. aureus infections from 2014 to 2021 were collected from the Microbiology department of Military Hospital 103, Vietnam. Only the first isolation from each kind of specimen from a particular patient was analyzed using the Cochran-Armitage and chi-square tests. Results: A total of 1130 individuals were diagnosed as S. aureus infection. Among them, 1087 strains were tested for AMR features. Most patients with S. aureus infection were in the age group of 41-65 years (39.82%). S. aureus isolates were predominant in the surgery wards, and pus specimens were the most common source of isolates (50.62%). S. aureus was most resistant to azithromycin (82.28%), erythromycin (82.82%), and clindamycin (82.32%) and least resistant to teicoplanin (0.0%), tigecycline (0.16%), quinupristin-dalfopristin (0.43%), linezolid (0.62%), and vancomycin (2.92%). Methicillin-resistant S. aureus (MRSA) and multidrug-resistant (MDR) S. aureus were prevalent, accounting for 73.02% and 60.90% of the total strains respectively, and the strains isolated from the intensive care unit (ICU) had the highest percentage of multidrug resistance (77.78%) among the wards. Conclusion: These findings highlight the urgent need for continuous AMR surveillance and updated treatment guidelines, particularly considering high resistance in MRSA, MDR strains, and ICU isolates. Future research focusing on specific resistant populations and potential intervention strategies is crucial to combat this rising threat.

13.
Res Vet Sci ; 166: 105107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38096739

ABSTRACT

Mastitis is one of the highly devastating issues responsible for production and economic losses in all dairy animals including sheep. This study was designed to investigate subclinical mastitis (SCM) associated with S. aureus in lactating nomadic ewes, along with the associated risk factors analysis. Furthermore, molecular characterization and antibiogram profiling of local methicillin-resistant S. aureus (MRSA) isolates of ovine origin were also performed. A total of 384 milk samples (n = 384) were collected from 13 nomadic sheep flocks using a convenient sampling technique. SCM was evaluated using a Surf Field Mastitis test and the S. aureus was isolated using standard microbiological techniques. Kirby-Bauer disc diffusion assay was used for phenotypic identification of MRSA while the mecA gene was tested through PCR. Study results revealed that SCM was prevalent at 34.37% while S. aureus association was recorded at 39.39%. MRSA prevalence was 36.53% and 21.15% using phenotypic and genotypic tests, respectively. The mecA gene sequences of study isolates showed maximum resemblance with already reported sequences from Pakistan, China, and Myanmar. MRSA isolates showed maximum resistance towards penicillin, ceftriaxone sodium, and trimethoprim + sulphamethoxazole while gentamicin, ciprofloxacin, and tylosin showed maximum efficacy. Risk factors analysis revealed that various flock management, housing, and host-related factors positively influenced the incidence of S. aureus-associated SCM. This study is the first report on the prevalence of S. aureus and MRSA associated with SCM in lactating ewes in Pakistan. This study will help to devise effective treatment and control strategies for S. aureus-associated SCM.


Subject(s)
Mastitis , Methicillin-Resistant Staphylococcus aureus , Sheep Diseases , Staphylococcal Infections , Animals , Sheep , Female , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin Resistance , Lactation , Mammary Glands, Animal , Pakistan/epidemiology , Milk/microbiology , Microbial Sensitivity Tests/veterinary , Mastitis/epidemiology , Mastitis/veterinary , Mastitis/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Sheep Diseases/epidemiology , Sheep Diseases/microbiology
14.
Ethiop. Med. j ; 62(1): 15-24, 2024. figures, tables
Article in English | AIM (Africa) | ID: biblio-1524541

ABSTRACT

Background Prior studies indicated increased antimicrobial resistance in Ethiopia, with related health, economic, and environmental costs. Knowing an institutions and population microbiologic profile allows for proper antibi-otic treatment, which substantially impact patients' outcomes such as healthcare related costs, morbidity, and mortality. The current study assessed the bacteriologic profile, resistance pattern, and treatment outcome in Lancet General Hospital. Method A retrospective cohort study on the bacteriologic profile, antibiotics resistance pattern, and outcome of patients was done on 128 eligible patients who were admitted to Lancet General Hospital from June 2022 to June 2023. Data from all hospitalized patients with culture-confirmed infection were analyzed. SPSS version 26.0 was used to analyze the data. Association between independent and dependent variables was analyzed using binary logistic regression model. Results Gram-negative bacteria were recovered in 77% of the cases. Extended-spectrum beta-lactamase producing Enterobacteriaceae was found in 37.5% (54) isolates and carbapenem resistant bacteria were identified in 27.8% of patients. In-hospital mortality from multidrug resistant bacterial infection was 14.8%. Age ≥ 65 years, presence of septic shock, and presence of carbapenem-resistant bacteria were independently associated with in-creased in-hospital mortality. Conclusion High number of resistant microorganisms was isolated, and increased mortality was documented from infections caused by carbapenem-resistant bacteria. Multi-center studies should be done to determine the extent of resistant organisms in health facilities throughout the country. epidemiology, and the findings should be factored into clinical decision making and program design for disease prevention, screening, and treatment. It also calls for further prospective research to learn more about the conditions in the context of additional relevant personal and clinical characteristics


Subject(s)
Humans , Male , Female
15.
Infect Drug Resist ; 16: 6297-6308, 2023.
Article in English | MEDLINE | ID: mdl-37780532

ABSTRACT

Purpose: Bloodstream infections (BSIs) was an essential cause of morbidity and mortality in children. Empiric broad-spectrum treatment of BSIs may be costly and unable to effectively eliminate the correct pathogenic microbes, resulting in downstream antimicrobial resistance. The purpose was to provide evidence for diagnosis and treatment of bloodstream infections in pediatrics, by revealing the pathogen distribution and antibiotic resistance pattern of BSIs. Methods: In this 5-year study, a total of 2544 pathogenic bacteria stains, isolated from 2368 patients with BSI, were retrospectively analyzed, to define the species distribution and the antimicrobial resistance pattern in Beijing. Results: The most frequently isolated pathogenic bacteria were K. pneumoniae (12.1%), S. aureus (11.5%), E. coli (11.2%), and E. faecium (11.2%). Hematological malignancies were the most common disease among patients with underlying conditions. Methicillin resistance was detected in 30.0% of S. aureus and 81.7% of coagulase-negative Staphylococcus (CoNS), respectively. The detection rates of carbapenem-resistant-E. coli (CRECO) and carbapenem-resistant-K. pneumoniae (CRKPN) were 10.8% and 50.8%, respectively. In terms of 122 isolates of S. pneumonia, 5 isolates (4.1%) were penicillin-resistant Streptococcus pneumoniae (PRSP); meanwhile, 50 isolates (41.0%) were penicillin-intermediate Streptococcus pneumoniae (PISP). Among the non-fermentative gram-negative bacilli isolates, 22.8% and 26.9% of the P. aeruginosa, were resistant to imipenem and meropenem. Furthermore, the resistance rates of A. baumannii to imipenem and meropenem both were 54.5%. Conclusion: In the study, we demonstrated the characteristics of bloodstream infections and antimicrobial susceptibility pattern of pediatrics in Beijing. Gram positive bacteria were the main pathogens of BSIs. CoNS strains presented even higher resistance to multiple antibiotics, including methicillin, than S. aureus. K. pneumoniae and E. coli represent the most common isolated gram-negative bacteria and exhibited high resistance to a variety of antimicrobial agents. Therefore, it was of critical importance to implement appropriate antimicrobial medication according to pathogen distribution and drug susceptibility test.

16.
J Lab Physicians ; 15(4): 616-620, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37780880

ABSTRACT

Objectives Pemphigus, a group of autoimmune bullous diseases, can be fatal, resulting from overwhelming opportunistic infection of lesions secondary to cutaneous bacterial infections. This study aimed to look into the cutaneous bacterial infection profile of pemphigus patients as timely identification and appropriate treatment can play a major role in reducing mortality. Materials and Methods Pus samples/swabs received from patients with pemphigus over a 2-year period from July 2018 to June 2020 were subjected to standard microbiological culture techniques and susceptibility testing. The frequency of isolation and susceptibility profile of the different bacterial pathogens toward various antimicrobial agents were interpreted and analyzed as per the Clinical and Laboratory Standards Institute's guidelines. Results Samples from 315 patients were received during the study period comprising of 203 (64.4%) males and 112 (35.5%) females. Of 211 samples which were culture-positive, a total of 245 bacterial isolates were obtained, comprising of 158 Gram-positive cocci and 87 Gram-negative bacilli. Staphylococcus aureus (138, 56.3%) was the most common isolate followed by Pseudomonas aeruginosa (41, 16.7%) and Escherichia coli (16, 6.5%). Methicillin resistance was observed in 24.6% Staphylococcus aureus isolates and carbapenem resistance in 9.5 to 14.6% Gram-negative bacilli. Conclusions Study findings emphasize the need for continuous monitoring of cutaneous pemphigus lesions for appropriate choice of antimicrobial therapy.

17.
Pharmaceutics ; 15(7)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37514074

ABSTRACT

Due to the rapid emergence of multi drug resistant (MDR) pathogens against which current antibiotics are no longer functioning, severe infections are becoming practically untreatable. Consequently, the discovery of new classes of effective antimicrobial agents with novel mechanism of action is becoming increasingly urgent. The bioactivity of Cannabis sativa, an herbaceous plant used for millennia for medicinal and recreational purposes, is mainly due to its content in phytocannabinoids (PCs). Among the 180 PCs detected, cannabidiol (CBD), Δ8 and Δ9-tetrahydrocannabinols (Δ8-THC and Δ9-THC), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN) and some of their acidic precursors have demonstrated from moderate to potent antibacterial effects against Gram-positive bacteria (MICs 0.5-8 µg/mL), including methicillin-resistant Staphylococcus aureus (MRSA), epidemic MRSA (EMRSA), as well as fluoroquinolone and tetracycline-resistant strains. Particularly, the non-psychotropic CBG was also capable to inhibit MRSA biofilm formation, to eradicate even mature biofilms, and to rapidly eliminate MRSA persiter cells. In this scenario, CBG, as well as other minor non-psychotropic PCs, such as CBD, and CBC could represent promising compounds for developing novel antibiotics with high therapeutic potential. Anyway, further studies are necessary, needing abundant quantities of such PCs, scarcely provided naturally by Cannabis plants. Here, after an extensive overture on cannabinoids including their reported antimicrobial effects, aiming at easing the synthetic production of the necessary amounts of CBG, CBC and CBD for further studies, we have, for the first time, systematically reviewed the synthetic pathways utilized for their synthesis, reporting both reaction schemes and experimental details.

18.
Antibiotics (Basel) ; 12(6)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37370349

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the major causes of a variety of infections in hospitals and the community. Their spread poses a serious public health problem worldwide. Nevertheless, in Tunisia and other African countries, very little molecular typing data on MRSA strains is currently available. In our study, a total of 64 MRSA isolates were isolated from clinical samples collected from burned patients hospitalized in the Traumatology and Burns Center of Ben Arous in Tunisia. The identification of the collection was based on conventional methods (phenotypic and molecular characterization). The characterization of the genetic support for methicillin resistance was performed by amplification of the mecA gene by polymerase chain reaction (PCR), which revealed that 78.12% of S. aureus harbors the gene. The resistance of all the collection to different antibiotic families was studied. Indeed, the analysis of strain antibiotic susceptibility confirmed their multi-resistant phenotype, with high resistance to ciprofloxacin, gentamicin, penicillin, erythromycin, and tetracycline. The resistance to the last three antibiotics was conferred by the blaZ gene (73.43%), the erm(C) gene (1.56%), the msr(A) gene (6.25%), and tet(M) gene (7.81%), respectively. The clonal diversity of these strains was studied by molecular typing of the accessory gene regulator (agr) system, characterization of the SCCmec type, and spa-typing. The results revealed the prevalence of agr types II and III groups, the SCCmec type III and II cassettes, and the dominance of spa type t233. The characterization of the eight enterotoxins genes, the Panton-Valentine leukocidin and the toxic shock syndrome toxin, was determined by PCR. The percentage of virulence genes detected was for enterotoxins (55%), tst (71.88%), leukocidin E/D (79.69%), and pvl (1.56%) factors. Furthermore, our results revealed that the majority of the strains harbor IEC complex genes (94%) with different types. Our findings highlighted the emergence of MRSA strains with a wide variety of toxins, leukocidin associated with resistance genes, and specific genetic determinants, which could constitute a risk of their spread in hospitals and the environment and complicate infection treatment.

19.
Acta Trop ; 245: 106967, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315829

ABSTRACT

The emergence of antimicrobial-resistant strains in Staphylococcus aureus (ß-lactam and methicillin-resistant) is an overwhelming issue worldwide. Using the purposive sampling technique, 217 equids samples were collected from district Layyah which were subjected to culturing followed by genotypic identification of mecA and blaZ genes by PCR. This study revealed that by phenotypic methods, a prevalence of 44.24%, 56.25%, and 47.92% was found for S. aureus, MRSA, and ß-lactam resistant S. aureus in equids. While genotypically, MRSA was found in 29.63% and ß-lactam resistant S. aureus in 28.26% of equids. In-vitro antibiotic susceptibility testing against S. aureus isolates harboring both mecA and blaZ genes showed a high resistance against Gentamicin (75%), followed by Amoxicillin (66.67%) and Trimethoprim+sulfamethoxazole (58.34%). In an attempt to re-sensitize the resistant bacteria to antibiotics, a combination of antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs) was used which revealed synergistic effect of Gentamicin and Trimethoprim+sulfamethoxazole with Phenylbutazone; and Amoxicillin with Flunixin meglumine. Analysis of risk factors revealed significant association with the S. aureus-associated respiratory infection in equids. Phylogenetic analysis of mecA and blaZ genes showed a high resemblance of study isolate's sequences with each other and variable resemblance with already reported isolates obtained from different samples of neighboring countries. This study reports the first molecular characterization and phylogenetic analysis of ß-lactam and methicillin resistant S. aureus in equids in Pakistan. Moreover, this study will help in the resistance modulation of resistant antibiotics (Gentamicin, Amoxicillin, Trimethoprim+sulfamethoxazole) and provide a good insight into planning an effective therapeutic regime.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Respiratory Tract Infections , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Phylogeny , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Gentamicins/pharmacology , Gentamicins/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/veterinary , beta-Lactam Resistance/genetics
20.
Antibiotics (Basel) ; 12(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37237803

ABSTRACT

Skin and soft tissue infections (SSTIs) are associated with significant morbidity and healthcare costs, especially when caused by methicillin-resistant Staphylococcus aureus (MRSA). Vancomycin is a preferred antimicrobial therapy for the management of complicated SSTIs (cSSTIs) caused by MRSA, with linezolid and daptomycin regarded as alternative therapeutic options. Due to the increased rates of antimicrobial resistance in MRSA, several new antibiotics with activity against MRSA have been recently introduced in clinical practice, including ceftobiprole, dalbavancin, and tedizolid. We evaluated the in vitro activities of the aforementioned antibiotics against 124 clinical isolates of MRSA obtained from consecutive patients with SSTIs during the study period (2020-2022). Minimum inhibitory concentrations (MICs) for vancomycin, daptomycin, ceftobiprole, dalbavancin, linezolid and tedizolid were evaluated by the MIC Test Strip using Liofilchem strips. We found that when compared to the in vitro activity of vancomycin (MIC90 = 2 µg/mL), dalbavancin possessed the lowest MIC90 (MIC90 = 0.094 µg/mL), followed by tedizolid (MIC90 = 0.38 µg/mL), linezolid, ceftobiprole, and daptomycin (MIC90 = 1 µg/mL). Dalbavancin demonstrated significantly lower MIC50 and MIC90 values compared to vancomycin (0.064 vs. 1 and 0.094 vs. 2, respectively). Tedizolid exhibited an almost threefold greater level of in vitro activity than linezolid, and also had superior in vitro activity compared to ceftobiprole, daptomycin and vancomycin. Multidrug-resistant (MDR) phenotypes were detected among 71.8% of the isolates. In conclusion, ceftobiprole, dalbavancin and tedizolid exhibited potent activity against MRSA and are promising antimicrobials in the management of SSTIs caused by MRSA.

SELECTION OF CITATIONS
SEARCH DETAIL